{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: Antenna Terminology" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.10: How_much_power_does_a_fifty_ohms_antenna_radiate_when_fed_a_current_five_amp.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.10\n", "clc;\n", "clear;\n", "close;\n", "Irms=5;// current in Amp\n", "Rr=50;// radiation resistance in m\n", "W=Irms^2*Rr;// power in Watts\n", "printf('The power = %d Watts', W);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.11: Calculate_the_radiation_resistance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.11\n", "clc;\n", "clear;\n", "close;\n", "G=20;// Power Gain\n", "D=22;// directivity\n", "n=G/D;// effeciency\n", "Rl=10;// loss-resistance in ohm\n", "Rr=(n*Rl)/(1-n);// radiation resistance in ohm\n", "printf('The radiation resistance = %f ohm', Rr);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.12: Calculate_the_front_to_back_ratio_of_an_antenna_in_dB.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.12\n", "clc;\n", "clear;\n", "close;\n", "P1=3000;// in Watts\n", "P2=500;// in Watts\n", "Gdb=10*log(P1/P2)/log(10);// front to back ratio of an antenna in dB\n", "printf('The front to back ratio of an antenna = %f dB', Gdb);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.13: Find_the_received_power.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.13\n", "clc;\n", "clear;\n", "close;\n", "G=40;// power gain in dB\n", "Gt=40;// power gain in dB\n", "Gr=40;// power gain in dB\n", "G1=10^(G/10);// power gain\n", "Gt1=10^(Gt/10);// power gain\n", "Gr1=10^(Gr/10);// power gain\n", "f=10*10^3;// frequency in MHz\n", "y=300/f;// wavelength in m\n", "Wt=1;// Transmitter in Watts\n", "r=30*10^3;// range of link in m\n", "Wr=(Wt*G1^2*y^2)/(4*%pi*r)^2;// receive power in Watts\n", "printf('The receive power = %f*10^-6 Watts', Wr*10^6);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.14: How_much_is_the_new_signal_picked_up_by_the_receiving_station.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.14\n", "clc;\n", "clear;\n", "close;\n", "V2=50;// in micro volt\n", "G=5;// voltage gain in dB\n", "G1=10^(G/20);// voltage gain\n", "V1=V2*G1;// signal at receiving station in volt\n", "printf('The signal at receiving station = %f micro volts', V1);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.15: Calculate_the_power_gai.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.15\n", "clc;\n", "clear;\n", "close;\n", "Pi=400*10^-3;// input power to reference Antenna\n", "Pt=100*10^-3;// input power to test antenna\n", "Gdb=10*log(Pi/Pt)/log(10);// power gain in dB\n", "printf('The power gain = %f dB', Gdb);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.16: Calculate_the_approximate_gain_and_beamwidth_of_a_paraboloidal_reflector_antenna.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.16\n", "clc;\n", "clear;\n", "close;\n", "D=20;// directivity\n", "A=%pi*(D/2)^2;\n", "f=4*10^3;// frequency in MHz\n", "y=300/f;// wavelength in meter\n", "n=0.55;// effeciency\n", "G=(4*%pi*n*A)/y^2;// gain\n", "Gdb=10*log(G)/log(10);// gain in dB\n", "B_W=(70*y/D);// beamwidth of a paraboloidal reflector antenna\n", "printf('The gain = %f dB', Gdb);\n", "printf('\n The beamwidth of a paraboloidal reflector antenna = %f degree', B_W);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.17: Find_out_the_quality_factor_Q_of_an_antenna.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.17\n", "clc;\n", "clear;\n", "close;\n", "df=0.600;// bandwidth in MHz\n", "fr=30;// frequency in MHz\n", "Q=fr/df;// quality factor\n", "printf('The quality factor = %d', Q);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.18: Calculate_the_bandwidth_of_an_antennas.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.18\n", "clc;\n", "clear;\n", "close;\n", "fr=110*10^6;// frequency in Hz\n", "Q=70;// quality factor\n", "df=fr/Q;// bandwidth in MHz\n", "printf('The bandwidth= %f MHz', df/10^6);\n", "printf('\n The answer is wrong in the textbook');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.19: Calculate_the_directivity_of_isotropic_antenna.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.19\n", "clc;\n", "clear;\n", "close;\n", "A=4*%pi;// for isotropic antenna\n", "D=4*%pi/A;// directivity\n", "printf('The directivity= %d', D);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1: What_is_the_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.1\n", "clc;\n", "clear;\n", "close;\n", "c=3*10^8;// the speed of light in m/s\n", "f=1000000;// frequency in Hz\n", "y=c/f;// wavelength in m\n", "printf('The wavelength = %d meter', y);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.20: Calculate_the_max_effective_aperture_of_a_microwave_antenna.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.20\n", "clc;\n", "clear;\n", "close;\n", "D=900;// directivity\n", "// Aem=(D.y^2)/(4*%pi), where y= Wavelength\n", "Aem=(D/(4*%pi));// max effective aperture\n", "printf('The max effective aperture= %f*y^2, where y= wavelength', Aem);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.21: Find_the_equivalent_temperature.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.21\n", "clc;\n", "clear;\n", "close;\n", "FdB=0.2;// noise figure in dB\n", "F=10^(FdB/10);// noise figure\n", "To=290;// temperature in k\n", "Te=(F-1)*To;// equivalent temperature in k\n", "printf('The equivalent temperature= %f k', Te);\n", "printf('\n The answer is wrong in the textbook');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.22: Find_the_noise_factor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.22\n", "clc;\n", "clear;\n", "close;\n", "Te=20;// equivalent temperature in k\n", "To=290;// temperature in k\n", "F=1+Te/To;// noise figure\n", "printf('The noise figure = %f', F);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.23: what_is_the_effective_noise_temperature.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.23\n", "clc;\n", "clear;\n", "close;\n", "FdB=1.1;// noise figure in dB\n", "F=10^(FdB/10);// noise figure\n", "To=290;// temperature in k\n", "Te=(F-1)*To;// equivalent temperature in k\n", "printf('The equivalent temperature= %f k', Te);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.24: EX2_24.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.24\n", "clc;\n", "clear;\n", "close;\n", "Ta=15;// effective temperature in k\n", "Tn=20;// effective noise temperature in k\n", "B=4*10^6;// noise bandwidth in Hz\n", "k=1.38*10^-23;// boltzmann's constant\n", "Ps_Bn=k*(Ta+Tn);// noise power per unit bandwidth in Watts/Hz\n", "Ps=Ps_Bn*B;// the total available noise power in Watts\n", "printf('The noise power per unit bandwidth= %f*10^-23 Watts/Hz', Ps_Bn*10^23);\n", "printf('\n The total available noise power= %f*10^-17 Watts', Ps*10^17);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.25: How_much_is_the_new_signal_picked_up_by_the_receiving_station.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.25\n", "clc;\n", "clear;\n", "close;\n", "V2=50;// in u volt\n", "G=5;// voltage gain in dB\n", "G1=10^(G/20);// voltage gain\n", "V1=V2*G1;// signal at receiving station in volt\n", "printf('The signal at receiving station = %f u-volts', V1);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.26: Calculate_the_max_effective_aperture_of_an_antenna.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.26\n", "clc;\n", "clear;\n", "close;\n", "y=5;// wavelength in m\n", "D=75;// directivity\n", "Aem=(D*y^2)/(4*%pi);// max efeective aperture in m^2\n", "printf('The max efeective aperture = %f m^2', Aem);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.27: Find_the_equivalent_temperature.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.27\n", "clc;\n", "clear;\n", "close;\n", "FdB=0.5;// noise figure in dB\n", "F=10^(FdB/10);// noise figure\n", "To=290;// temperature in k\n", "Te=(F-1)*To;// equivalent temperature in k\n", "printf('The equivalent temperature= %f k', Te);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.28: Find_the_noise_factor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.28\n", "clc;\n", "clear;\n", "close;\n", "Te=40;// equivalent temperature in k\n", "To=290;// temperature in k\n", "F=1+Te/To;// noise figure\n", "printf('The noise figure = %f', F);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.29: What_is_the_effective_noise_temperature.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.29\n", "clc;\n", "clear;\n", "close;\n", "FdB=1.5;// noise figure in dB\n", "F=10^(FdB/10);// noise figure\n", "To=290;// temperature in k\n", "Te=(F-1)*To;// equivalent temperature in k\n", "printf('The equivalent temperature= %f k', Te);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2: What_is_the_actual_velocity_of_EM_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.2\n", "clc;\n", "clear;\n", "close;\n", "c=3*10^8;// the speed of light in m/s\n", "f=0.75;// propagation fector\n", "v=c*f;// actual veloity in m/s\n", "printf('The actual veloity = %f*10^8 meter/sec', v/10^8);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.30: EX2_30.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.30\n", "clc;\n", "clear;\n", "close;\n", "Ta=25;// effective temperature in k\n", "Tn=45;// effective noise temperature in k\n", "B=7*10^6;// noise bandwidth in Hz\n", "k=1.38*10^-23;// boltzmann's constant\n", "Ps_Bn=k*(Ta+Tn);// noise power per unit bandwidth in Watts/Hz\n", "Ps=Ps_Bn*B;// the total available noise power in Watts\n", "printf('The noise power per unit bandwidth= %f*10^-23 Watts/Hz', Ps_Bn*10^23);\n", "printf('\n The total available noise power= %f*10^-17 Watts', Ps*10^17);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.31: Calculate_the_gain_and_beam_width_of_the_antenna.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.31\n", "clc;\n", "clear;\n", "close;\n", "f=7.375*10^3;// frequency in MHz\n", "y=300/f;// wavelength in m\n", "D=2.7;// directivity\n", "Ae=%pi*(D/2)^2*0.65;// effective aperture\n", "G=(4*%pi/y^2)*Ae;// gain \n", "BW=70*y/D;// Beamwidth in A\n", "printf('The gain = %f ', G);\n", "printf('\n The Beamwidth = %f A', BW);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.32: How_much_is_the_new_signal_picked_up_by_the_receiving_station.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.32\n", "clc;\n", "clear;\n", "close;\n", "V2=60;// in u volt\n", "G=15;// voltage gain in dB\n", "G1=10^(G/20);// voltage gain\n", "V1=V2*G1;// signal at receiving station in volt\n", "printf('The signal at receiving station = %f u-volts', V1);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.33: Calculate_the_radiation_resistance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.33\n", "clc;\n", "clear;\n", "close;\n", "G=30;// Power Gain\n", "D=42;// directivity\n", "n=G/D;// effeciency\n", "Rl=25;// loss-resistance in ohm\n", "Rr=(n*Rl)/(1-n);// radiation resistance in ohm\n", "printf('The radiation resistance = %f ohm', Rr);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.34: Determine_the_total_radited_power.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.34\n", "clc;\n", "clear;\n", "close;\n", "// For a closed surface, a sphere of radius r is choosen. To find the total radiated power, the radiated component of the power density is integrated over its surface. therefore,\n", "// Wt=double integration of (ar.Ao.(sin(x)/r^2))*(ar.r^2.sin(x)) with limits from 0 to 2*pi and from 0 to pi, and on integration we get , pi^2*Ao watts\n", "printf('The total radiated power= pi^2*Ao watts');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.35: EX2_35.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.35\n", "clc;\n", "clear;\n", "close;\n", "// The max radiation is directed along x=pi/2. Therefore, Ymax=Ao\n", "// radiation intensity in example 2.34 is , Wt=pi^2*Ao\n", "// then, max directivity, Do=4*pi*Ymax/Wt=4*pi*Ao/pi^2*Ao=4/pi\n", "Do=4/%pi;// the max directivity\n", "// since the radiation intensity is only a function of angle x, the directivity as a function of the directional angles is represented by, D=Do*sin(x)\n", "printf('The max directivity = %f', Do);\n", "printf('\n The directivity as a function of the directional angles is represented by, D=Do*sin(x), where Do is the max value of directivity');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.36: EX2_36.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.36\n", "clc;\n", "clear;\n", "close;\n", "// The radiation intensity is given by, F=r^2*Wr=Ao*(sin(x))^2\n", "// The max radiation is directed along x=pi/2. therefore, Ymax=Ao\n", "// the total radiated power is given by,Wt= Ao(8*pi/3)\n", "// then the max directivity is equal to\n", "// Do=4*pi*Ymax/Wt=4*pi*Ao/(8*pi*Ao/3)=3/2\n", "Do=3/2;// the max directivity\n", "printf('The max directivity = %f', Do);\n", "printf('\n The directivity as a function of the directional angles is represented by, D=1.5*(sin(x))^2');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.37: Show_the_max_effective_aperture_of_a_short_dipole_antenna.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Ex:2.37\n", "clc;\n", "clear;\n", "close;\n", "// It is assume that\n", "// 1. short dipole is coincide with x-axis\n", "// 2. Plane polarized wave in travelling along y-axis and including current along the x-axis of antenna which constant throughout the length of the dipole and in the same phase\n", "// 3. Length of the short dipole is small in comparison to wavelength i.e. dl<