{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 23: Dielectrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23.1: calculation_of_relative_permittivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 23.1\n", "//calculation of relative permittivity\n", "\n", "//given values\n", "\n", "E=1000;//electric field in V/m\n", "P=4.3*10^-8;//polarization in C/m^2\n", "e=8.85*10^-12;//permittivity in F/m\n", "\n", "\n", "//calculation\n", "er=1+(P/(e*E));\n", "disp(er,'relative permittivity of NaCl is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23.2: calculation_of_electronic_polarizability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 23.2\n", "//calculation of electronic polarizability\n", "\n", "//given values\n", "\n", "e=8.85*10^-12;//permittivity in F/m\n", "er=1.0024;//relative permittivity at NTP\n", "N=2.7*10^25;//atoms per m^3\n", "\n", "\n", "//calculation\n", "alpha=e*(er-1)/N;\n", "disp(alpha,'electronic polarizability (in F/m^2)is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23.3: calculation_of_electronic_polarizability_and_relative_permittivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 23.3\n", "//calculation of electronic polarizability and relative permittivity\n", "\n", "//given values\n", "\n", "e=8.85*10^-12;//permittivity in F/m\n", "N=9.8*10^26;//atoms per m^3\n", "r=.53*10^-10;//radius in m\n", "\n", "\n", "//calculation\n", "alpha=4*%pi*e*r^3;\n", "disp(alpha,'electronic polarizability (in F/m^2)is ');\n", "er=1+(4*%pi*N*r^3);\n", "disp(er,'relative permittivity is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23.4: calculation_of_electronic_polarizability_and_relative_permittivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 23.4\n", "//calculation of electronic polarizability and relative permittivity\n", "\n", "//given values\n", "w=32;//atomic weight of sulphur \n", "d=2.08*10^3;//density in kg/m^3\n", "NA=6.02*10^26;//avogadros number\n", "alpha=3.28*10^-40;//electronic polarizability in F.m^2\n", "e=8.854*10^-12;//permittiviy\n", "//calculation\n", "\n", "n=NA*d/w;\n", "k=n*alpha/(3*e);\n", "er=(1+2*k)/(1-k);\n", "disp(er,'relative permittivity is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23.5: calculation_of_ionic_polarizability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 23.5\n", "//calculation of ionic polarizability\n", "\n", "//given values\n", "n=1.5;//refractive index\n", "er=6.75;//relative permittivity\n", "\n", "//calculation\n", "Pi=(er-n^2)*100/(er-1);\n", "disp(Pi,'percentage ionic polarizability (in %)) is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23.6: calculation_of_frequency_and_phase_difference.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 23.6\n", "//calculation of frequency and phase difference\n", "\n", "//given values\n", "t=18*10^-6;//relaxation time in s\n", "\n", "//calculation\n", "f=1/(2*%pi*t);\n", "disp(f,'frequency at which real and imaginary part of complx dielectric constant are equal is');\n", "alpha=atan(1)*180/%pi;// phase difference between current and voltage( 1 because real and imaginry parts are equal of the dielectric constant)\n", "disp(alpha,'phase diffeerence (in degree) is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23.7: calculation_of_frequency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 23.7\n", "//calculation of frequency\n", "\n", "//given values\n", "t=5.5*10^-3;//thickness of plate in m\n", "Y=8*10^10;//Young's modulus in N/m^2\n", "d=2.65*10^3;//density in kg/m^3\n", "\n", "\n", "\n", "//calculation\n", "f=sqrt(Y/d)/(2*t);//in Hz\n", "disp(f/10^3,'frequency of fundamental note(in KHz) is');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }