{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 18: Semiconductors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.2: calculation_of_probability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 18.2\n", "//calculation of probability\n", "\n", "//given values\n", "T=300;//temp in K\n", "kT=.026;//temperture equivalent at room temp in eV\n", "Eg=5.6;//forbidden gap in eV\n", "\n", "//calculation\n", "f=1/(1+%e^(Eg/(2*kT)));\n", "\n", "disp(f,'probability of an e being thermally promoted to conduction band is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.3: calculation_of_fraction_of_e_in_CB.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 18.3\n", "//calculation of fraction of e in CB\n", "\n", "//given values\n", "T=300;//temp in K\n", "kT=.026;//temperture equivalent at room temp in eV\n", "Eg1=.72;//forbidden gap of germanium in eV\n", "Eg2=1.1;//forbidden gap of silicon in eV\n", "Eg3=5.6;//forbidden gap of diamond in eV\n", "\n", "//calculation\n", "f1=%e^(-Eg1/(2*kT));\n", "disp(f1,'fraction of e in conduction band of germanium is');\n", "f2=%e^(-Eg2/(2*kT));\n", "disp(f2,'fraction of e in conduction band of silicon is');\n", "f3=%e^(-Eg3/(2*kT));\n", "disp(f3,'fraction of e in conduction band of diamond is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.4: calculation_of_fractionional_change_in_no_of_e.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 18.3\n", "//calculation of fractionional change in no of e\n", "\n", "//given values\n", "T1=300;//temp in K\n", "T2=310;//temp in K\n", "Eg=1.1;//forbidden gap of silicon in eV\n", "k=8.6*10^-5;//boltzmann's constant in eV/K\n", "\n", "//calculation\n", "n1=(10^21.7)*(T1^(3/2))*10^(-2500*Eg/T1);//no of conduction e at T1\n", "n2=(10^21.7)*(T2^(3/2))*10^(-2500*Eg/T2);//no of conduction e at T2\n", "x=n2/n1;\n", "disp(x,'fractional change in no of e is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.5: calculation_of_resistivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 18.5\n", "//calculation of resistivity\n", "\n", "//given values\n", "e=1.6*10^-19;\n", "ni=2.5*10^19;//intrinsic density of carriers per m^3\n", "ue=.39;//mobility of e \n", "uh=.19;//mobility of hole\n", "\n", "\n", "//calculation\n", "c=e*ni*(ue+uh);//conductivity\n", "r=1/c;//resistivity\n", "disp(r,'resistivity in ohm m is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.6: calculation_of_conductivity_of_intrinsic_and_doped_semiconductors.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 18.6\n", "//calculation of conductivity of intrinsic and doped semiconductors\n", "\n", "//given values\n", "h=4.52*10^24;//no of holes per m^3\n", "e=1.25*10^14;//no of electrons per m^3\n", "ue=.38;//e mobility\n", "uh=.18;//hole mobility\n", "q=1.6*10^-19;//charge of e in C\n", "//calculation\n", "ni=sqrt(h*e);//intrinsic concentration\n", "ci=q*ni*(ue+uh);\n", "disp(ci,'conductivity of semiconductor(in S/m) is');\n", "cp=q*h*uh;\n", "disp(cp,'conductivity of doped semiconductor (in S/m) is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.7: calculation_of_hole_concentration.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 18.7\n", "//calculation of hole concentration\n", "\n", "//given values\n", "ni=2.4*10^19;//carrier concentration per m^3\n", "N=4*10^28;//concentration of ge atoms per m^3\n", "\n", "//calculation\n", "ND=N/10^6;//donor cocntrtn\n", "n=ND;//no of electrones\n", "\n", "p=ni^2/n;\n", "disp(p,'concentartion of holes per m^3 is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.8: calculation_of_Hall_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 18.8\n", "//calculation of Hall voltage\n", "\n", "//given values\n", "ND=10^21;//donor density per m^3\n", "B=.5;//magnetic field in T\n", "J=500;//current density in A/m^2\n", "w=3*10^-3;//width in m\n", "e=1.6*10^-19;//charge in C\n", "\n", "//calculation\n", "\n", "\n", "V=B*J*w/(ND*e);//in volts\n", "disp(V*10^3,'Hall voltage in mv is');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }