From 476705d693c7122d34f9b049fa79b935405c9b49 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 14 Apr 2020 10:19:27 +0530 Subject: Initial commit --- .../2-Capacitance.ipynb | 592 +++++++++++++++++++++ 1 file changed, 592 insertions(+) create mode 100644 The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb (limited to 'The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb') diff --git a/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb b/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb new file mode 100644 index 0000000..38f3bc9 --- /dev/null +++ b/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb @@ -0,0 +1,592 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Capacitance" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: calculating_H_field_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"i=0.1; //current in Ampere\n", +"r=0.05; //radius in metre\n", +"h=(i*100)/(2*(%pi)*r); //calculating h\n", +"disp(h,'H field intensity for 100 turns in A/metre = '); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: calculating_H_field_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Radius is doubled.Therefore, H filed becomes half = 16 A/metre.'); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12: calculating_H_field_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('H field at the center is nearly the same.'); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: calculating_H_field_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"i=10; //current\n", +"r=0.005; //radius in metre\n", +"h1=(i)/(4*2*(%pi)*r); //at half radius H is (1/4)th\n", +"disp(h1,'H field intensity at one half of radius in A/metre = '); //displaying result\n", +"h2=(i)/(2*(%pi)*0.01); //calculating H at surface\n", +"disp(h2,'H field intensity at surface in A/metre = '); //displaying result\n", +"disp('H field intensity is proportional to radius.Therefore, it is zero at the center.'); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.14: calculating_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"v=2; //voltage in volts\n", +"l=10^-3; //inductance in Henry\n", +"i=10*10^-3; //current\n", +"di=v/l; //change in current in A/sec\n", +"t=i/di; //calculating time\n", +"disp(t,'Time required to reach 0.01 A in sec = '); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.15: calculating_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"v=2; //voltage in volts\n", +"l=10^-3; //inductance in Henry\n", +"i=10*10^-3; //current\n", +"e=(1/2)*l*i*i; //calculating energy\n", +"disp(e,'Energy in Joule = '); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.16: calculating_H_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"p=20*10^-2; //path length in metre\n", +"m=20000; //relative permeability of magnetic material\n", +"i=2*10^-3; //current in Ampere\n", +"n=500; //no of turns\n", +"h=n*i; //calculating A/turn for 20 cm\n", +"disp(h,'H for 20 cm in A/turn = '); //displaying result\n", +"a=h/(20*10^-2); //calculating H per metre\n", +"disp(a,'H field per metre in A/metre = '); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.17: calculating_B_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"mo=(4*(%pi)*10^-7); //relative permeability of free space\n", +"p=20*10^-2; //path length in metre\n", +"m=20000; //relative permeability of magnetic material\n", +"i=2*10^-3; //current in Ampere\n", +"n=500; //no of turns\n", +"H=n*i; //calculating A/turn for 20 cm\n", +"disp(H,'H for 20 cm in A/turn = '); //displaying result\n", +"a=H/(20*10^-2); //calculating H per metre\n", +"disp(a,'H field per metre in A/metre = '); //displaying result\n", +"B=(m*mo*a); //calculating flux\n", +"disp(B,'Flux in Tesla = '); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.18: calculating_flux.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"area=5*10^-4; //area\n", +"mo=(4*(%pi)*10^-7); //relative permeability of free space\n", +"p=20*10^-2; //path length in metre\n", +"m=20000; //relative permeability of magnetic material\n", +"i=2*10^-3; //current in Ampere\n", +"n=500; //no of turns\n", +"H=n*i; //calculating A/turn for 20 cm\n", +"disp(H,'H for 20 cm in A/turn = '); //displaying result\n", +"a=H/(20*10^-2); //calculating H per metre\n", +"disp(a,'H field per metre in A/metre = '); //displaying result\n", +"B=(m*mo*a); //calculating flux\n", +"disp(B,'Flux in Tesla = '); //displaying result\n", +"l=B*area; //calculating flux density\n", +"disp(l,'Flux Density in Weber/metre = '); //diaplaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.19: calculating_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"v=0.04; //voltage per turn in Volt\n", +"area=5*10^-4; //metre square\n", +"B=v/area; //calculating B\n", +"disp(B,'B in Tesla/sec = '); //displaying result\n", +"H=B/(4*(%pi)*10^-7*20000); //calculating H\n", +"disp(H,'H in A/m = '); //displaying result\n", +"disp('Therefore, for 500 turns and 20 cm = 1.27 A/sec.25.4 ms for 20 mA and 38.1 ms for 30 mA'); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: calculating_capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example 2.1');\n", +"v=3000; //volume in metre cube.\n", +"theta=0.2; //theta in owu(open window unit).\n", +"s=1850; //area in metre cube.\n", +"as=theta*s; //calculating total absorbtion of surface.\n", +"T=(0.165*v)/as //calculating T using Sabine formula\n", +"disp(T,'Reverberation time of Room = '); //Displaying Result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.20: calculating_lowest_frequency_square_wave.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"phi=0.5; //flux density in Tesla\n", +"v=10; //peak to peak voltage\n", +"disp('At 80 Tesla/sec it takes 1/160 sec to reach 0.5 Tesla.Therefore,to reach maximum B in opposite sense and return to zero it will take 4/160 sec.'); //displaying result\n", +"disp('This is a frequency of 40 Hz.'); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21: calculating_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"v=7.5*10^-5; //volume in metre cube\n", +"b=1; //flux in tesla\n", +"mo=4*(%pi)*10^-7; //permeability of free space\n", +"m=20000; //permeability of material\n", +"h=b/(m*mo); //calculating field intensity\n", +"e=(1/2)*b*h*v; //calculating energy\n", +"disp(e,'Energy in Joule = '); //displaying energy" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.22: calculating_H_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"v=7.5*10^-5; //volume in metre cube\n", +"b=1; //flux in tesla\n", +"mo=4*(%pi)*10^-7; //permeability of free space\n", +"m=20000; //permeability of material\n", +"h=b/(m*mo); //calculating field intensity\n", +"e=(1/2)*b*h*v; //calculating energy\n", +"disp(e,'Energy in Joule = '); //displaying energy\n", +"disp(h,'Field in the gap = '); //displaying field intensity\n", +"disp(h*10^-2,'Current per metre = Therefore in the gap of 0.001 m current required in mA = '); //displaying result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: calculating_charge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example 2.2');\n", +"v=120000; //volume in metre cube.\n", +"t=1.5; //time in second.\n", +"s=25000; //area in metre cube.\n", +"a=(0.16*v)/(t*s); //using Sabine formula for calculating a\n", +"disp(a,'Average Absorbing Power of Surface = '); //Displaying Result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: calculating_D.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example 2.3');\n", +"v=6000 //Volume in metre cube.\n", +"as=20 //surface absorbtion in owu(open window unit).\n", +"T=(0.165*v)/(as); //calculating T using Sabine Formula.\n", +"disp(T,'Reverberation Time = '); //Displaying Result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: calculating_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example2.4');\n", +"v=3500; //volume in metre cube.\n", +"n1=370-300; //no. of audience on wooden seats.\n", +"n2=300-70; //no. of empty wooden seats.\n", +"a1s1=0.04*60; //absorption due to wooden doors.\n", +"a2s2=0.03*700; //absorption due to plastered walls.\n", +"a3s3=0.06*50; //absorption due to glass work.\n", +"a4s4=4.2*370; //absorption due to audience on spungy and wooden \n", +"//seats.\n", +"a5s5=2*230; //absorption due to empty seats.\n", +"sum=a1s1+a2s2+a3s3+a4s4+a5s5; //total absorption of cinema hall.\n", +"T=(0.165*v)/sum; //calculating T using Sabine Formula.\n", +"disp(T,'Reverberation Time = '); //Displaying Result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: calculating_time_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example 2.5');\n", +"l=10; //length in centimetres.\n", +"Y=20*10^11; //Young's Modulus in dyne/cm square.\n", +"R=8; //Density in gram/cc\n", +"n=(1/(2*l))*sqrt(Y/R); //calculating frequency of vibration using \n", +"//young's modulus.\n", +"disp(n,'Frequency of vibration in Hz.'); //Displaying Result. " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: calculating_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example 2.7');\n", +"t=0.1; //thickness in centimetre.\n", +"Y=8.75*10^11; //Young's Modulus in dyne/cm square.\n", +"R=2.654; //Density in gram/cm square.\n", +"n=(1/(2*t))*sqrt(Y/R); //calculating frequency using Young's modulus.\n", +"disp(n,'Frequency of Vibration in Hz = '); //Displaying Result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: calculating_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example 2.7');\n", +"K=2.026*10^9; //Bulk Modulus in N/m square.\n", +"R=10^3; //Density in Kg/m cube.\n", +"V=sqrt(K/R); //Calculating speed using Bulk Modulus.\n", +"disp(V,'Velocity of sound waves in water in m/sec = '); //displaying result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: calculating_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"disp('Example 2.8');\n", +"Y=1.41; //Young's Modulus.\n", +"R=1.293*10^-3; //Density of air in g/centimetre cube.\n", +"P=76*13.6*980; //atmospheric pressure in dyne/cm square.\n", +"V=sqrt((Y*P)/R); //calculating speed using young's modulus.\n", +"disp(V,'Speed of ultrasonic wave in air at n.t.p. in cm/sec = '); //displaying result. \n", +"disp(V*10^-2,'Speed in m/sec'); //displaying result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: finding_H_field_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"r=0.1; //in metre\n", +"H=3/(2*(%pi)*r); //calculating H field intensity\n", +"disp(H,'H field intensity in A/metre = '); //displaying result" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit