From 476705d693c7122d34f9b049fa79b935405c9b49 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 14 Apr 2020 10:19:27 +0530 Subject: Initial commit --- .../46-BRAKING.ipynb | 288 +++++++++++++++++++++ 1 file changed, 288 insertions(+) create mode 100644 Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb (limited to 'Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb') diff --git a/Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb b/Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb new file mode 100644 index 0000000..95ef84d --- /dev/null +++ b/Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb @@ -0,0 +1,288 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 46: BRAKING" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.1: Braking_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 8: BRAKING\n", +"\n", +"// EXAMPLE : 8.1 :\n", +"// Page number 806\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"V = 525.0 // Voltage of motor(V)\n", +"I_1 = 50.0 // Current(A)\n", +"T_1 = 216.0 // Torque(N-m)\n", +"I_2 = 70.0 // Current(A)\n", +"T_2 = 344.0 // Torque(N-m)\n", +"I_3 = 80.0 // Current(A)\n", +"T_3 = 422.0 // Torque(N-m)\n", +"I_4 = 90.0 // Current(A)\n", +"T_4 = 500.0 // Torque(N-m)\n", +"V_m = 26.0 // Speed(kmph)\n", +"R_b = 5.5 // Resistance of braking rheostat(ohm)\n", +"R_m = 0.5 // Resistance of motor(ohm)\n", +"\n", +"// Calculations\n", +"I = 75.0 // Current drawn at 26 kmph(A)\n", +"back_emf = V-I*R_m // Back emf of the motor(V)\n", +"R_t = R_b+R_m // Total resistance(ohm)\n", +"I_del = back_emf/R_t // Current delivered(A)\n", +"T_b = T_3*I_del/I_3 // Braking torque(N-m)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 8.1 : SOLUTION :-')\n", +"printf('\nBraking torque = %.f N-m', T_b)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.2: Current_delivered_when_motor_works_as_generator.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 8: BRAKING\n", +"\n", +"// EXAMPLE : 8.2 :\n", +"// Page number 806\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"V = 525.0 // Voltage of motor(V)\n", +"I_1 = 50.0 // Current(A)\n", +"N_1 = 1200.0 // Speed(rpm)\n", +"I_2 = 100.0 // Current(A)\n", +"N_2 = 950.0 // Speed(rpm)\n", +"I_3 = 150.0 // Current(A)\n", +"N_3 = 840.0 // Speed(rpm)\n", +"I_4 = 200.0 // Current(A)\n", +"N_4 = 745.0 // Speed(rpm)\n", +"N = 1000.0 // Speed opearting(rpm)\n", +"R = 3.0 // Resistance(ohm)\n", +"R_m = 0.5 // Resistance of motor(ohm)\n", +"\n", +"// Calculations\n", +"I = 85.0 // Current drawn at 1000 rpm(A)\n", +"back_emf = V-I*R_m // Back emf of the motor(V)\n", +"R_t = R+R_m // Total resistance(ohm)\n", +"I_del = back_emf/R_t // Current delivered(A)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 8.2 : SOLUTION :-')\n", +"printf('\nCurrent delivered when motor works as generator = %.f A', I_del)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.3: Energy_returned_to_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 8: BRAKING\n", +"\n", +"// EXAMPLE : 8.3 :\n", +"// Page number 810\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"W = 400.0 // Weight of train(tonne)\n", +"G = 100.0/70 // Gradient(%)\n", +"t = 120.0 // Time(sec)\n", +"V_1 = 80.0 // Speed(km/hr)\n", +"V_2 = 50.0 // Speed(km/hr)\n", +"r_kg = 5.0 // Tractive resistance(kg/tonne)\n", +"I = 7.5 // Rotational inertia(%)\n", +"n = 0.75 // Overall efficiency\n", +"\n", +"// Calculations\n", +"W_e = W*(100+I)/100 // Accelerating weight of train(tonne)\n", +"r = r_kg*9.81 // Tractive resistance(N-m/tonne)\n", +"energy_recuperation = 0.01072*W_e*(V_1**2-V_2**2)/1000 // Energy available for recuperation(kWh)\n", +"F_t = W*(r-98.1*G) // Tractive effort during retardation(N)\n", +"distance = (V_1+V_2)*1000*t/(2*3600) // Distance travelled by train during retardation period(m)\n", +"energy_train = abs(F_t)*distance/(3600*1000) // Energy available during train movement(kWh)\n", +"net_energy = n*(energy_recuperation+energy_train) // Net energy returned to supply system(kWh)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 8.3 : SOLUTION :-')\n", +"printf('\nEnergy returned to lines = %.2f kWh\n', net_energy)\n", +"printf('\nNOTE: ERROR: Calculation mistakes & more approximation in textbook solution')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.4: Energy_returned_to_the_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 8: BRAKING\n", +"\n", +"// EXAMPLE : 8.4 :\n", +"// Page number 810\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"W = 355.0 // Weight of train(tonne)\n", +"V_1 = 80.5 // Speed(km/hr)\n", +"V_2 = 48.3 // Speed(km/hr)\n", +"D = 1.525 // Distance(km)\n", +"G = 100.0/90 // Gradient(%)\n", +"I = 10.0 // Rotational inertia(%)\n", +"r = 53.0 // Tractive resistance(N/tonne)\n", +"n = 0.8 // Overall efficiency\n", +"\n", +"// Calculations\n", +"beta = (V_1**2-V_2**2)/(2*D*3600) // Braking retardation(km phps)\n", +"W_e = W*(100+I)/100 // Accelerating weight of train(tonne)\n", +"F_t = 277.8*W_e*beta+98.1*W*G-W*r // Tractive effort(N)\n", +"work_done = F_t*D*1000 // Work done by this effort(N-m)\n", +"energy = work_done*n/(1000*3600) // Energy returned to line(kWh)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 8.4 : SOLUTION :-')\n", +"printf('\nEnergy returned to the line = %.1f kWh', energy)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.5: Braking_effect_and_Rate_of_retardation_produced_by_this_braking_effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 8: BRAKING\n", +"\n", +"// EXAMPLE : 8.5 :\n", +"// Page number 811-812\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"funcprot(0)\n", +"\n", +"// Given data\n", +"area = 16.13 // Area of brakes(sq.cm/pole face)\n", +"phi = 2.5*10**-3 // Flux(Wb)\n", +"u = 0.2 // Co-efficient of friction\n", +"W = 10.0 // Weight of car(tonnes)\n", +"\n", +"// Calculations\n", +"a = area*10**-4 // Area of brakes(sq.m/pole face)\n", +"F = phi**2/(2*%pi*10**-7*a) // Force(N)\n", +"force = F*u // Braking effect considering flux and coefficient of friction(N)\n", +"beta = u*F/(W*1000)*100 // Rate of retardation produced by braking effect(cm/sec^2)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 8.5 : SOLUTION :-')\n", +"printf('\nBraking effect, F = %.f N', force)\n", +"printf('\nRate of retardation produced by this braking effect, β = %.2f cm/sec^2', beta)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit