From 476705d693c7122d34f9b049fa79b935405c9b49 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 14 Apr 2020 10:19:27 +0530 Subject: Initial commit --- Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb | 90 +++++++++++++++++++++++++ 1 file changed, 90 insertions(+) create mode 100644 Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb (limited to 'Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb') diff --git a/Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb b/Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb new file mode 100644 index 0000000..8b5cd2f --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb @@ -0,0 +1,90 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Cosmology" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Hubbles_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex16.1: Pg 15 (2005)\n", +"clc; clear;\n", +"c = 3e+05; // Velocity of light, km/s\n", +"v = c/4; // Recessional velocity, km/s\n", +"H_0 = 20e-06; // Hubble's constant, km/s/lightyear\n", +"// From Hubble's law, v = H_o*R_max, solving for R_max\n", +"R_max = v/H_0; // Maximum distance at which Hubble's law applies without relativistic correction, lightyears\n", +"printf('\nThe maximum distance at which Hubbles law applies without relativistic correction = %1.0e ly', R_max);\n", +"printf('\n');\n", +"\n", +"// Result\n", +"// The maximum distance at which Hubbles law applies without relativistic correction = 4e+09 ly" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: Critical_density_of_universe.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex16.2: Pg 22 (2005)\n", +"clc; clear;\n", +"H = 23e-03/(9.46e15); // Hubble's constant, km/s/ly\n", +"G = 6.67e-11; // Gravitational constant, N-m^2/kg^2\n", +"// Since H^2 = (8*%pi*G*p_c)/3, solving for p_c\n", +"p_c = (3*H^2)/(8*%pi*G); // Critical mass density of universe, kg/m^3\n", +"printf('\nCritical mass density of universe = %4.2e kg per metre cube', p_c);\n", +"\n", +"\n", +"// Result\n", +"// Critical mass density of universe = %1.06e-27 kg/m^3" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit