From 476705d693c7122d34f9b049fa79b935405c9b49 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 14 Apr 2020 10:19:27 +0530 Subject: Initial commit --- .../1-Tension_Comprssion_and_Shear.ipynb | 272 +++++++++++ Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb | 444 ++++++++++++++++++ ...eview_of_Centroids_and_Moments_of_Inertia.ipynb | 126 +++++ .../2-Axially_Loaded_Members.ipynb | 339 ++++++++++++++ Mechanics_Of_Material_by_J_M_Gere/3-Torsion.ipynb | 313 +++++++++++++ .../4-Shear_Forces_and_Bending_Moments.ipynb | 84 ++++ .../5-Stresses_in_Beams_Basic_Topics.ipynb | 521 +++++++++++++++++++++ .../6-Stresses_in_Beams_Advanced_Topics.ipynb | 301 ++++++++++++ .../7-Analysis_of_Stress_and_Strain.ipynb | 315 +++++++++++++ ...ssure_Vessels_Beams_and_Combined_Loadings.ipynb | 352 ++++++++++++++ 10 files changed, 3067 insertions(+) create mode 100644 Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/12-Review_of_Centroids_and_Moments_of_Inertia.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/2-Axially_Loaded_Members.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/3-Torsion.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/4-Shear_Forces_and_Bending_Moments.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/5-Stresses_in_Beams_Basic_Topics.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/6-Stresses_in_Beams_Advanced_Topics.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/7-Analysis_of_Stress_and_Strain.ipynb create mode 100644 Mechanics_Of_Material_by_J_M_Gere/8-Applications_of_Plane_Stress_Pressure_Vessels_Beams_and_Combined_Loadings.ipynb (limited to 'Mechanics_Of_Material_by_J_M_Gere') diff --git a/Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb b/Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb new file mode 100644 index 0000000..8332449 --- /dev/null +++ b/Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb @@ -0,0 +1,272 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Tension Comprssion and Shear" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Determine_the_compressive_stress_and_strain_in_the_post.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"d_1 = 4 ; // inner diameter (inch)\n", +"d_2 = 4.5 ; //outer diameter (inch)\n", +"P = 26000 ; // pressure in pound\n", +"L = 16; // Length of cylinder (inch)\n", +"del = 0.012 ; // shortening of post (inch)\n", +"A = (%pi/4)*((d_2^2)-(d_1^2)) //Area (inch ^2)\n", +"s = P/A; // stress\n", +"disp('psi',s,'compressive stress in the post is')\n", +"e = del / L; // strain\n", +"disp(e,'compressive strain in the post is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Calculation_of_maximum_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"W = 1500; // weight (Newton)\n", +"d = 0.008 ; //diameter(meter) \n", +"g = 77000; // Weight density of steel\n", +"L = 40 ; // Length of bar (m)\n", +"A = (%pi/4)*(d^2) // Area\n", +"s_max = (1500/A) + (g*L) // maximum stress\n", +"disp('Pa',s_max,'Therefore the maximum stress in the rod is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Determination_of_various_structural_properties_of_the_pipe.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"d1 = 4.5; // diameter in inch\n", +"d2 = 6 ; // diameter in inch\n", +"A = (%pi/4)*((d2^2)-(d1^2)) // Area\n", +"P = 140 ; // pressure in K\n", +"s = -P/A ; // stress (compression)\n", +"E = 30000 ; // young's modulus in Ksi\n", +"e = s/E ; // strain\n", +"// Part (a)\n", +"del = e*4*12 // del = e*L ;\n", +"disp(del,'Change in length of the pipe is')\n", +"// Part (b)\n", +"v = 0.30; // Poissio's ratio\n", +"e_ = -(v*e)\n", +"disp(e_,'Lateral strain in the pipe is')\n", +"// Part (c)\n", +"del_d2 = e_*d2 ;\n", +"del_d1 = e_*d1;\n", +"disp('inch',del_d1,'Increase in the inner diameter is ')\n", +"// Part (d)\n", +"t = 0.75;\n", +"del_t = e_*t ;\n", +"disp('inch',del_t,'Increase in the wall thicness is')\n", +"del_t1 = (del_d2-del_d1)/2 ;\n", +"disp('del_t1 = del_t')\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Calculation_of_average_shear_and_compressive_stress_in_a_punch.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"d = 0.02 ; // diameter in m\n", +"t = 0.008 ; // thickness in m\n", +"A = %pi*d*t ; // shear area\n", +"P = 110000 ; // prassure in Newton\n", +"A1 = (%pi/4)*(d^2); // Punch area\n", +"t_aver = P/A ; // Average shear stress \n", +"disp('Pa',t_aver,'Average shear stress in the plate is ')\n", +"s_c = P/A1 ; // compressive stress\n", +"disp('Pa',s_c,'Average compressive stress in the plate is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Determination_of_various_structural_properties_of_the_pin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"P = 12; // Pressure in K\n", +"t = 0.375 ; // thickness of wall in inch\n", +"theta = 40 ; // angle in degree\n", +"d_pin = 0.75 ; // diameter of pin in inch\n", +"t_G = 0.625 ; // thickness of gusset in inch\n", +"t_B = 0.375 ; //thickness of base plate in inch\n", +"d_b = 0.50 ; // diameter of bolt in inch\n", +"//Part (a)\n", +"s_b1 = P/(2*t*d_pin); // bearing stress\n", +"disp('ksi',s_b1,'Bearing stress between strut and pin')\n", +"//Part (b)\n", +"t_pin = (4*P)/(2*%pi*(d_pin^2)); // average shear stress in the \n", +"disp('ksi',t_pin,'Shear stress in pin is ')\n", +"// Part (c)\n", +"s_b2 = P/(2*t_G*d_pin); // bearing stress between pin and gusset\n", +"disp('ksi',s_b2,' Bearing stress between pin and gussets is')\n", +"// Part (d)\n", +"s_b3 = (P*cosd(40))/(4*t_B*d_b); // bearing stress between anchor bolt and base plate\n", +"disp('ksi',s_b3,'Bearing stress between anchor bolts and base plate')\n", +"// Part (e)\n", +"t_bolt = (4*cosd(40)*P)/(4*%pi*(d_b^2)); // shear stress in anchor bolt\n", +"disp('ksi',t_bolt,'Shear stress in anchor bolts is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: Determination_of_allowable_tensile_load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"b1 = 1.5 ; // width of rectangular crosssection in inch\n", +"t = 0.5 ; // thickness of rectangular crosssection in inch\n", +"b2 = 3 ; // width of enlarged rectangular crosssection in inch\n", +"d = 1 ; // diameter in inch\n", +"// Part (a)\n", +"s_1 = 16000; // maximum allowable tensile stress in Psi\n", +"P_1 = s_1*t*b1 ;\n", +"disp('lb',P_1,'The allowable load P1 is')\n", +"// Part (b)\n", +"s_2 = 11000; // maximum allowable tensile stress in Psi\n", +"P_2 = s_2*t*(b2-d) ;\n", +"disp('lb',P_2,'allowable load P2 at this section is')\n", +"//Part (c)\n", +"s_3 = 26000; // maximum allowable tensile stress in Psi\n", +"P_3 = s_3*t*d \n", +"disp('lb',P_3,'The allowable load based upon bearing between the hanger and the bolt is')\n", +"// Part (d)\n", +"s_4 = 6500; // maximum allowable tensile stress in Psi\n", +"P_4 = (%pi/4)*(d^2)*2*s_4 ;\n", +"disp('lb',P_4,'the allowable load P4 based upon shear in the bolt is')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Determination_of_required_cross_section_area_of_the_bar.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Horizontal component at A in N\n", +"R_ah = (2700*0.8 + 2700*2.6)/2 ;\n", +"// Horizontal component at C in N\n", +"R_ch = R_ah ;\n", +"// vertical component at C in N\n", +"R_cv = (2700*2.2 + 2700*0.4)/3 ;\n", +"// vertical component at A in N\n", +"R_av = 2700 + 2700 - R_cv ;\n", +"R_a = sqrt((R_ah^2)+(R_av^2))\n", +"R_c = sqrt((R_ch^2)+(R_cv^2))\n", +"Fab = R_a; // Tensile force in bar AB\n", +"Vc = R_c; // Shear force acting on the pin at C\n", +"s_allow = 125000000 ; // allowable stress in tension \n", +"t_allow = 45000000; // allowable stress in shear\n", +"Aab = Fab / s_allow; // required area of bar \n", +"Apin = Vc / (2*t_allow); // required area of pin\n", +"disp('m2',Apin,'Required area of bar is ')\n", +"d = sqrt((4*Apin)/%pi); // diameter in meter\n", +"disp('m',d,'Required diameter of pin is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb b/Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb new file mode 100644 index 0000000..0f47082 --- /dev/null +++ b/Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb @@ -0,0 +1,444 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Columns" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: EX11_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"E = 29000; // Modulus of elasticity in ksi\n", +"spl = 42 ; // Proportional limit in ksi\n", +"L = 25 ; // Total length of coloum in ft\n", +"n = 2.5 ; // factor of safety\n", +"I1 = 98 ; // Moment of inertia on horizontal axis\n", +"I2 = 21.7 ; // Moment of inertia on vertical axis\n", +"A = 8.25 ; // Area of the cross section\n", +"Pcr2 = (4*%pi^2*E*I2)/((L*12)^2) ; // Criticle load if column buckles in the plane of paper\n", +"Pcr1 = (%pi^2*E*I1)/((L*12)^2) ; // Criticle load if column buckles in the plane of paper\n", +"Pcr = min(Pcr1,Pcr2) ; // Minimum pressure would govern the design\n", +"scr = Pcr/A ; // Criticle stress\n", +"Pa = Pcr/n ; // Allowable load in k\n", +"disp('k',Pa,'The allowable load is ')\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: EX11_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"L = 3.25 ; // Length of alluminium pipe in m\n", +"d = 0.1 ; // Outer diameter of alluminium pipe\n", +"P = 100000; // Allowable compressive load in N\n", +"n =3 ; // Safety factor for eular buckling\n", +"E = 72e09 ; // Modulus of elasticity in Pa\n", +"l = 480e06 ; // Proportional limit\n", +"Pcr = n*P ; // Critic;e load\n", +"t = (0.1 - (55.6e-06)^(1/4) )/2 ; // Required thickness\n", +"// Above formula comes from solving following equation\n", +"// d2 = d ; d1 = d-2*t ; Pcr = n*P ; I = (%pi/64)*(d2^4-d1^4); Pcr = (2.406*%pi^2*E*I)/((L)^2) ;\n", +"tmin = t ;\n", +"disp('mm',tmin*1000,'The minimum required thickness of the coloumn is')\n", +"// Supplimentry calculatios \n", +"I = (%pi/64)*(d^4-(d-2*t)^4) ; // Moment of inertia\n", +"A = (%pi/4)*(d^2-(d-2*t)^2) ; // Area of cross section\n", +"r = sqrt(I/A);\n", +"s = L/r // slenderness ratio\n", +"scr = Pcr/A ; // Criticle stress " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: Determination_of_longest_permissible_length_of_rod.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"P = 1500 ; // Load in lb\n", +"e = 0.45 ; // ecentricity in inch\n", +"h = 1.2 ; // Height of cross section in inch\n", +"b = 0.6 ; // Width of cross section in inch\n", +"E = 16e06 ; // Modulus of elasticity \n", +"del = 0.12 ; // Allowable deflection in inch\n", +"L = asec(1.2667)/0.06588 ; // Maximum allowable length possible\n", +"// Above formula comes from solving following equation\n", +"// Pcr = (%pi^2*E*I)/(4*(L)^2); I = (h*b^3)/12; del = e*(sec((%pi/2)*sqrt(P/Pcr))-1)\n", +"disp('inch',L,'The longest permissible length of the bar is')\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: Calculation_of_compressive_stress_and_factor_of_safety.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"L = 25 ; // Length of coloum in ft\n", +"P1 = 320 ; // Load in K\n", +"P2 = 40 ; // Load in K\n", +"E = 30000 ; // Modulus of elasticity of steel in Ksi\n", +"P = 360 ; // Euivalent load\n", +"e = 1.5 ; // Ecentricity of compressive load\n", +"A = 24.1 ; // Area of the Cross section\n", +"r = 6.05 ; // in inch\n", +"c = 7.155 ; // in inch\n", +"sy = 42 ;// Yeild stress of steel in Ksi\n", +"smax = (P/A)*(1+(((e*c)/r^2)*sec((L/(2*r))*sqrt(P/(E*A))))); // Maximum compressive stress\n", +"disp('ksi',smax,'The Maximum compressive stress in the column ')\n", +"// Bisection method method to solve for yeilding\n", +"function [x] = stress(a,b,f)\n", +" N = 100;\n", +" eps = 1e-5;\n", +" if((f(a)*f(b))>0) then\n", +" error('no root possible f(a)*f(b)>0');\n", +" abort;\n", +" end;\n", +" if(abs(f(a))0)\n", +" c = (a+b)/2\n", +" if(abs(f(c))0) then\n", +" error('no root possible f(a)*f(b)>0');\n", +" abort;\n", +" end;\n", +" if(abs(f(a))0)\n", +" c = (a+b)/2\n", +" if(abs(f(c))0) then\n", +" error('no root possible f(a)*f(b)>0');\n", +" abort;\n", +" end;\n", +" if(abs(f(a))0)\n", +" c = (a+b)/2\n", +" if(abs(f(c))