From 476705d693c7122d34f9b049fa79b935405c9b49 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 14 Apr 2020 10:19:27 +0530 Subject: Initial commit --- .../1-Heat_And_Temperature_Thermometry.ipynb | 328 ++++++++ .../10-thermodynamic_relations.ipynb | 120 +++ .../11-production_of_low_temperature.ipynb | 91 +++ .../12-transmission_of_heat.ipynb | 418 ++++++++++ .../14-radiation_of_heat.ipynb | 381 +++++++++ .../15-elements_of_statistical_mechanics.ipynb | 328 ++++++++ .../16-classical_and_quantum_statistics.ipynb | 144 ++++ .../2-Thermal_Expansion.ipynb | 326 ++++++++ .../3-calorimetry.ipynb | 554 +++++++++++++ .../4-change_of_state.ipynb | 427 ++++++++++ .../5-Kinetic_theory_of_Heat.ipynb | 152 ++++ .../6-kinetic_theory_of_gases.ipynb | 448 ++++++++++ .../7-continuity_of_state.ipynb | 285 +++++++ .../8-thermodynamics.ipynb | 899 +++++++++++++++++++++ .../9-entropy.ipynb | 512 ++++++++++++ 15 files changed, 5413 insertions(+) create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/1-Heat_And_Temperature_Thermometry.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/10-thermodynamic_relations.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/11-production_of_low_temperature.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/12-transmission_of_heat.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/14-radiation_of_heat.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/15-elements_of_statistical_mechanics.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/16-classical_and_quantum_statistics.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/2-Thermal_Expansion.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/4-change_of_state.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/5-Kinetic_theory_of_Heat.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/6-kinetic_theory_of_gases.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/7-continuity_of_state.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb create mode 100644 Heat_And_Thermodynamics_by_D_S_Mathur/9-entropy.ipynb (limited to 'Heat_And_Thermodynamics_by_D_S_Mathur') diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/1-Heat_And_Temperature_Thermometry.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/1-Heat_And_Temperature_Thermometry.ipynb new file mode 100644 index 0000000..4a4293f --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/1-Heat_And_Temperature_Thermometry.ipynb @@ -0,0 +1,328 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Heat And Temperature Thermometry" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: chapter_1_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"T1=25//c\n", +"T2=15//c\n", +"r=1.035\n", +"//CALCULATIONS\n", +"s=(r-1)/(T1-(T2*r))\n", +"t=-1/s\n", +"//reults\n", +"printf(' absolute zero= % 1f C',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: chapter_1_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"n=2\n", +"//CALCULATIONS\n", +"t= 160/(5*n-9)\n", +"//RESULTS\n", +"printf (' Temperature of the fahrenheit scale= % f C',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: chapter_1_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"n= 1/1000\n", +"T= 60 //degrees\n", +"T1= 100 //degrees\n", +"//CALCULATIONS\n", +"r= T-n*T^2\n", +"r1= T1-n*T1^2\n", +"tl= r*100/r1\n", +"//RESULTS\n", +"printf (' liquid temperature= % 1f C',tl)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: chapter_1_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p=1.0//metres\n", +"p0=0.8//metres\n", +"p100=1.093//metres\n", +"//CALCULATIONS\n", +"t=((p-p0)*100/(p100-p0))\n", +"//RESULTS\n", +"printf(' temperature of hot water= % 1f C',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: chapter_1_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p0=0.70//metres\n", +"LC=0.1//millimetres\n", +"t= 100 //degrees\n", +"//CALCULATIONS\n", +"p100=p0*(1+(t/273))\n", +"T=(LC/(p100-p0))\n", +"//results\n", +"printf(' accuracy we can expect= % 1f C',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: chapter_1_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"t=80//celsius\n", +"tp=80.2//celsius\n", +"T=120\n", +"//CALCULATIONS\n", +"s=(10000)*((t-tp)/(t*(t-100)))\n", +"Tp=T-((s*t*(T-100))/10000)\n", +"//results\n", +"printf(' temperature= % 1f C',Tp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: chapter_1_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"R100=5.93//ohms\n", +"Ro=5.0//ohms\n", +"P100=1.366//metres\n", +"Po=1//metres\n", +"Pt=1.3111//metres\n", +"Rt=5.795//ohms\n", +"//calculations\n", +"tp=(Rt-Ro)*100/(R100-Ro)\n", +"t=(Pt-Po)*100/(P100-Po)\n", +"//results\n", +"printf(' thermal on platinum scale= % 2f C',tp)\n", +"printf(' thermal on gas scale= % 1f C',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: chapter_1_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"Rt=13.3//ohms\n", +"R100=7.0//ohms\n", +"R0=5.0//ohms\n", +"t=444.6//celsius\n", +"RT=9.1//ohms\n", +"//CALCULATIONS\n", +"tp=(Rt-R0)*100/(R100-R0)\n", +"Tp=(RT-R0)*100/(R100-R0)\n", +"s=(t-tp)*10000/(t*(t-100))\n", +"T=Tp+((s*(Tp*(Tp-100)))/10000)\n", +"Ts=Tp+((s*T*(T-100))/10000)\n", +"//results\n", +"printf(' platinum temperature of bath= % 2f C',T)\n", +"printf(' gas temperature of bath= % 2f C',Ts)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: chapter_1_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"et=3.92//millivolts\n", +"e100=0.65//millivolts\n", +"e0=0//millivolts\n", +"e=2//volts\n", +"lp=1000//centimetres\n", +"ld=50.2//centimetres\n", +"rp=0.01//ohm per centimetre\n", +"rs=2500//ohms\n", +"j=5*10^-6\n", +"//CALCULATIONS\n", +"i=e/(rs+(lp*rp))\n", +"p=i*rp*lp/100\n", +"p1=p*ld\n", +"T=p1/j\n", +"t=(100*(et-e0))/(e100-e0)\n", +"//results\n", +"printf(' temperature= % 1f C',t)\n", +"printf(' \n temperature= % 1f C',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: chapter_1_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"ht=65//cm\n", +"h0=-5//cm\n", +"t=273//c\n", +"//CALCULATIONAS\n", +"h100=h0+(100*(ht-h0)/t)\n", +"l=(1+(t/273))\n", +"H=(ht-(h0*l))/(l-1)\n", +"printf(' temperature= % 1f cm',H)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/10-thermodynamic_relations.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/10-thermodynamic_relations.ipynb new file mode 100644 index 0000000..ad4d23e --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/10-thermodynamic_relations.ipynb @@ -0,0 +1,120 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: thermodynamic relations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.13: chapter_10_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"dq=540000\n", +"dv=1.676\n", +"T1=373//k\n", +"T2=423//k\n", +"p1=1//pa\n", +"//CALCULATIONS\n", +"dt=T2-T1\n", +"dp=(dt*dq*4.2)/(dv*T1)\n", +"p2=p1+(dp/10^5)\n", +"//results\n", +"printf(' \n required pressure= % 1f pa',p2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: chapter_10_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"T=5+273//k\n", +"v=10^-6//m3\n", +"a=15*10^-6//k^-1\n", +"cp=1005//cal/kg/k\n", +"dp=(1000-0)*10^5//N/m2\n", +"//CALCULATIONS\n", +"dt=(T*a*v*dp)/(cp*4.2)\n", +"//results\n", +"printf(' \n temperature of water rises by= % 1f k',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.8: chapter_10_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"T=5+273//k\n", +"v=10^-6//m3\n", +"a=15*10^-6//k^-1\n", +"cp=1005//cal/kg/k\n", +"dp=(1000-0)*10^5//N/m2\n", +"//CALCULATIONS\n", +"q=(T*a*v*dp)/4.2\n", +"//results\n", +"printf(' \n quantity of heat given= % 1f cal',q)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/11-production_of_low_temperature.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/11-production_of_low_temperature.ipynb new file mode 100644 index 0000000..54ce3bb --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/11-production_of_low_temperature.ipynb @@ -0,0 +1,91 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: production of low temperature" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: chapter_11_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"a=0.245\n", +"b=2.67*10^-2\n", +"dp=50//pa\n", +"t1=300//k\n", +"R=8.4//j\n", +"//CALCULATIONS\n", +"cp=7*R/5\n", +"l=((2*a)/(R*t1))-b\n", +"dt=(dp*l)/cp\n", +"//results\n", +"printf(' \n drop in temperature= % 1f k',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: chapter_11_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"k=6*10^-5\n", +"B=5000\n", +"c=420//J\n", +"T=2//k\n", +"//CALCULATIONS\n", +"dt=-(k*B*B)/(2*c*T)\n", +"T1=T+dt\n", +"//results\n", +"printf(' \n final temperature= % 1f k',T1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/12-transmission_of_heat.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/12-transmission_of_heat.ipynb new file mode 100644 index 0000000..83bcfc4 --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/12-transmission_of_heat.ipynb @@ -0,0 +1,418 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: transmission of heat" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.10: chapter_12_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"t2=162//c\n", +"t1=62//c\n", +"l=0.15//m\n", +"d=0.02//m\n", +"k=226//watt per kelvin metre\n", +"//CALCULATIONS\n", +"r=d/2\n", +"a=3.14*r*r\n", +"p=2*3.14*r\n", +"x=(log(t2/t1))/l\n", +"e=(x*x*k*a)/p\n", +"//results\n", +"printf(' \n surface emissivity of rod= % 1f ',e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.11: chapter_12_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=5.6//c\n", +"t2=2.8//c\n", +"t3=0.7//c\n", +"d1=2//m\n", +"d2=4//m\n", +"d3=8//m\n", +"w=(2*3.14)/365\n", +"//CALCULATIONS\n", +"d=(log(t1/t2))/(d2/d1)\n", +"k=w*1000/(d*d)\n", +"//results\n", +"printf(' \n diffusity= % 1f m^2 per day',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.12: chapter_12_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"kcu=0.93//cal per sec per cm per c\n", +"t=700\n", +"//CALCULATIONS\n", +"khell=t*kcu\n", +"kmks=khell*100\n", +"ksi=4.2*khell\n", +"//results\n", +"printf(' \n conductivity= % 1f cal per sec per cm per c',khell)\n", +"printf(' \n conductivity= % 1f cal per sec per m per c',kmks)\n", +"printf(' \n conductivity= % 1f watt per m per k',ksi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: chapter_12_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"cu=390\n", +"al=226\n", +"lal=0.05//m\n", +"//CALCULATIONS\n", +"lcu=((cu/al)^0.5)*lal\n", +"//results\n", +"printf(' \n wax melts up to= % 1f m',lcu)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: chapter_12_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"m=96//gm\n", +"m1=5//gm\n", +"t1=37//c\n", +"t2=10//c\n", +"l=10//cm\n", +"t=4*60//s\n", +"a=5//cm^2\n", +"dt=24//c\n", +"//CALCULATIONS\n", +"k=m*(t1-t2)/(a*t*dt)\n", +"h1=m1*540\n", +"h2=m*(t1-t2)\n", +"dh=h1-h2\n", +"p=dh*100/h1\n", +"//results\n", +"printf(' \n thermal conductivity= % 1f cgs units',k)\n", +"printf(' \n percentage of heat loss= % 1f ',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: chapter_12_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"cu=90\n", +"fe=12\n", +"t1=200//c\n", +"t2=0//c\n", +"l=0.3//m\n", +"a=5*10^-4//m^2\n", +"//CALCULATIONS\n", +"t=(t1*cu+fe*t2)/(cu+fe)\n", +"dt=t1-t\n", +"rh=cu*a*dt/0.15\n", +"//results\n", +"printf(' \n rate of heat flow= % 1f cal/sec',rh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: chapter_12_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"a=25//sq.mt\n", +"aw=5//sq.mt\n", +"dt=30//c\n", +"t=60*60//sec\n", +"l=0.3//m\n", +"br=0.12\n", +"gl=0.25\n", +"l1=0.03//cm\n", +"//CALCULATIONS\n", +"A=4*a-aw\n", +"hb=(br*A*dt*t)/(l*1000)\n", +"hw=(gl*aw*dt*t)/(l1*100)\n", +"tot=hb+hw\n", +"//results\n", +"printf(' \n total heat passing per hour= % 1f k.cal',tot)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: chapter_12_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"k1=0.252\n", +"k2=0.05\n", +"t1=273//k\n", +"t2=285//k\n", +"l1=0.0175//m\n", +"l2=0.02//m\n", +"//CALCULATIONS\n", +"t=((k1/l1)*t1+(k2/l2)*t2)/(k1/l1+k2/l2)\n", +"//results\n", +"printf(' \n temperature of interface= % 1f k',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: chapter_12_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"cu=104\n", +"w=0.14\n", +"l1=50//cm\n", +"t=0.0001//m\n", +"t1=100//c\n", +"t2=0//c\n", +"//CALCULATIONS\n", +"x=cu*t*100/w\n", +"l=l1+2*x\n", +"dt=t1-t2\n", +"dg=dt/l\n", +"d1=x*dg\n", +"d2=t1-d1\n", +"//results\n", +"printf(' \n temperature gradient= % 1f c/cm',dg)\n", +"printf(' \n temperature of one end= % 1f c',d1)\n", +"printf(' \n temperature of other end= % 1f c',d2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: chapter_12_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"m=4800//g\n", +"lice=80//cal/g\n", +"a=3600//sq.cm\n", +"t1=100//c\n", +"t2=0//c\n", +"t=10//cm\n", +"//CALCULATIONS\n", +"h=(m*lice)/(a*t)\n", +"dt=t1-t2\n", +"k=(h*t)/(a*dt)\n", +"//results\n", +"printf(' \n thermal conductivity of stone= % 1f cal/cm s c',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: chapter_12_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=100//c\n", +"t2=4//c\n", +"k=0.5//cal/cm s c\n", +"a=12//cm^2\n", +"l=8//cm\n", +"r=36//cal/s\n", +"//CALCULATIONS\n", +"T=(((r*l)/(k*a))+t1+t2)*0.5\n", +"//results\n", +"printf(' \n equilibrium temperature of inner surface= % 1f c',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.9: chapter_12_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"r2=0.5\n", +"r1=0.4\n", +"l=30//cm\n", +"q=(500*10)/60\n", +"t=100//c\n", +"t1=20//c\n", +"t2=30//c\n", +"dt=t-(t1+t2)/2\n", +"//CALCULATIONS\n", +"k=(q*log((r2)/(r1)))/(2*3.14*dt*l)\n", +"//results\n", +"printf(' \n thermal conductivity of glass tube= % 1f cgs units',k)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/14-radiation_of_heat.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/14-radiation_of_heat.ipynb new file mode 100644 index 0000000..71133d3 --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/14-radiation_of_heat.ipynb @@ -0,0 +1,381 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: radiation of heat" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.10: chapter_14_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"r=15*10^10//m\n", +"R=7*10^8//m\n", +"si=6.72*10^-8//j m^-2 sec^-1 deg^-4\n", +"s=81350 //j m^-2 min^-1\n", +"//CALCULATIONS\n", +"t=(r*r*s)/(R*R*si*60)\n", +"T=t^0.25\n", +"//results\n", +"printf(' \n value of temperature= % 1f k',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.11: chapter_14_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"s=8.2*10^4\n", +"si=5.67*10^-8//j m^-2 sec^-1 deg ^-4\n", +"a=32\n", +"//CALCULATIONS\n", +"r2=a/2\n", +"r1=(r2*3.14)/(60*180)\n", +"r=r1^2\n", +"t=s/(r*60*si)\n", +"T=t^0.25\n", +"//results\n", +"printf(' \n surface temperature of sun= % 1f k',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.12: chapter_14_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"s=1.5//cal cm^-2 min^-1\n", +"k=0.0027\n", +"//CALCULATIONS\n", +"td=-(s/(k*60))\n", +"//results\n", +"printf(' \n temperature gradient= % 1f c cm^-1',td)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: chapter_14_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"si=5.735*10^-8//j m^-2 sec ^-1 deg^-4\n", +"t=1227+273//k\n", +"r=0.003//m\n", +"//CALCULATIONS\n", +"e=3.14*r*r*si*t^4*60/4.2\n", +"//results\n", +"printf(' \n energy= % 1f cal',e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: chapter_14_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=573//k\n", +"t2=273//k\n", +"m=0.032//kg\n", +"s=100\n", +"r=0.35//c/sec\n", +"a=0.0008//sq.mt\n", +"e=1\n", +"//CALCULATIONS\n", +"E=m*s*r\n", +"si=E/(a*e*((t1^4)-(t2^4)))\n", +"//results\n", +"printf(' \n stefans constant= % 1e j m^-2 sec^-1 deg^-4',si)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: chapter_14_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"E=40//j/sec\n", +"a=0.66*10^-4//sq.mt\n", +"e=0.31\n", +"t=273+2170//k\n", +"//CALCULATIONS\n", +"si=E/(e*a*t^4)\n", +"//results\n", +"printf(' \n stefans constant= % 1e j m^-2 sec^-1 deg^-4',si)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: chapter_14_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=500//k\n", +"t2=300//k\n", +"m=10//kg\n", +"s=100//cal/kg/k\n", +"r=0.07//m\n", +"//CALCULATIONS\n", +"a=4*3.14*r*r\n", +"E=a*((t1*t1*t1*t1)-(t2*t2*t2*t2))\n", +"r=E/(m*s)\n", +"//results\n", +"printf(' \n maximum rate at which temperature will fall= % 1f c/sec',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: chapter_14_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=700//k\n", +"t2=290//k\n", +"E=10000//w m^-2\n", +"si=5.7*10^-8\n", +"//CALCULATIONS\n", +"t=(t1^4+t2^4)/2\n", +"T=t^0.25\n", +"t1=E/si\n", +"T1=t1^0.25\n", +"//results\n", +"printf(' \n temperature its rate will be halved= % 1f k',T)\n", +"printf(' \n temperature of body= % 1f k',T1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: chapter_14_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"E=40//w\n", +"r=0.00005//m\n", +"l=0.1//m\n", +"si=5.67*10^-8\n", +"T=2773//k\n", +"//CALCULATIONS\n", +"a=2*3.14*r*l\n", +"e=E/(a*si*(T^4))\n", +"//results\n", +"printf(' \n relative emittance= % 1f ',e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: chapter_14_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"r=0.02//m\n", +"t1=120+273//k\n", +"t2=100+273//k\n", +"si=5.67*10^-8\n", +"//CALCULATIONS\n", +"a=4*3.14*r*r\n", +"E=a*si*(t1^4-t2^4)\n", +"//results\n", +"printf(' \n rate at which energy must be supplied= % 1f watts',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: chapter_14_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t=6000//k\n", +"r=17000\n", +"//CALCULATIONS\n", +"T=6000*17000^0.25\n", +"//results\n", +"printf(' \n temperature of the star= % 1f k',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.9: chapter_14_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"l=4753*10^-8//cm\n", +"w=0.293\n", +"t=10^7//k\n", +"//CALCULATIONS\n", +"T=w/l\n", +"lm=w/(t*100)\n", +"//results\n", +"printf(' \n effective temperature of sun= % 1f k',T)\n", +"printf(' \n wavelength of max energy= % 1e m',lm)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/15-elements_of_statistical_mechanics.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/15-elements_of_statistical_mechanics.ipynb new file mode 100644 index 0000000..ce54bdf --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/15-elements_of_statistical_mechanics.ipynb @@ -0,0 +1,328 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: elements of statistical mechanics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.10: chapter_15_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=301//k\n", +"t2=300//k\n", +"f=5*(10^30)\n", +"fa=f/2\n", +"//CALCULATIONS\n", +"r=t1/t2\n", +"i=r^fa\n", +"//results\n", +"printf(' \sigma(E) increases by a factor r^fa ')\n", +"printf(' \n r= % 1f ',r)\n", +"printf(' \n fa= % 1f ',fa)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.11: chapter_15_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"de=5.52*10^-21//j\n", +"k=1.38*10^-23\n", +"//CALCULATIONS\n", +"t=de/(2*k)\n", +"//results\n", +"printf(' \n temperature of system= % 1f k',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.14: chapter_15_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p=0.76*9.81*13600\n", +"dv=10^-5//m3\n", +"k=1.38*10^-23\n", +"t=300//k\n", +"//CALCULATIONS\n", +"r=(p*dv)/(k*t)\n", +"//results\n", +"printf(' \n factor by which number of accessible states increases is exp(r) ')\n", +"printf(' \n r= % 1e ',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: chapter_15_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"c=8\n", +"h=3\n", +"t=5\n", +"//CALCULATIONS\n", +"a=factorial(8)/(factorial(3)*factorial(5)*2^8)\n", +"//results\n", +"printf(' \n probability of 3 heads and 5 tails= % 1f ',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: chapter_15_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=5\n", +"h=2\n", +"p=1/6\n", +"//CALCULATIONS\n", +"t=1-p\n", +"a=((factorial(n))/(factorial(h)*factorial(n-h)))*(p^h)*(t^(n-h))\n", +"//results\n", +"printf(' \n probability of apperance of 4 in two dices= % 1f ',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: chapter_15_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=12\n", +"p=2\n", +"//CALCULATIONS\n", +"t=n/p\n", +"a=factorial(n)/(factorial(t)*factorial(n-t)*p^n)\n", +"//results\n", +"printf(' \n probability= % 1f ',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: chapter_15_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=10\n", +"a=0.6\n", +"h=0\n", +"//CALCULATIONS\n", +"b=1-a\n", +"p=factorial(n)*a^10/(factorial(n-h)*factorial(h))\n", +"//results\n", +"printf(' \n probability of heads occurence= % 1f ',a*10)\n", +"printf(' \n probability of occuring head only in 10 throws= % 1f ',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: chapter_15_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=400\n", +"a1=300\n", +"b1=100\n", +"a2=200\n", +"b2=200\n", +"r=2\n", +"//CALCULATIONS\n", +"p1=factorial(n)/(factorial(a1)*factorial(b1)*r^n)\n", +"p2=factorial(n)/(factorial(a2)*factorial(b2)*r^n)\n", +"w=p1/p2\n", +"//results\n", +"printf(' \n ratio of probabilities= % 1e ',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.6: chapter_15_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"a1=2\n", +"a2=6\n", +"a3=16\n", +"a4=2\n", +"b1=1\n", +"b2=3\n", +"b3=4\n", +"b4=7\n", +"//CALCULATIONS\n", +"a=a1+a2+a3+a4\n", +"x=a1*b1+a2*b2+a3*b3+a4*b4\n", +"p2=a1/a\n", +"p6=a2/a\n", +"p16=a3/a\n", +"d=x/a\n", +"//results\n", +"printf(' \n probability of state 2= % 1f ',p2)\n", +"printf(' \n probability of state 6= % 1f ',p6)\n", +"printf(' \n probability of state 16= % 1f ',p16)\n", +"printf(' \n value of = % 1f ',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.9: chapter_15_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"dx=10^-11//m\n", +"c=10^7//m/sec\n", +"h=6.6*10^-34\n", +"//CALCULATIONS\n", +"dp=(9.1*10^-31*c)\n", +"n=(2*dx*dp*100)/h\n", +"//results\n", +"printf(' \n number of quantum states available= % 1f ',n)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/16-classical_and_quantum_statistics.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/16-classical_and_quantum_statistics.ipynb new file mode 100644 index 0000000..f6f73d5 --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/16-classical_and_quantum_statistics.ipynb @@ -0,0 +1,144 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: classical and quantum statistics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.10: chapter_16_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t=300//k\n", +"e=0.01//v\n", +"//CALCULATIONS\n", +"a=1/((exp(e/t))+1)\n", +"//results\n", +"printf(' \n NFD= % 1f ',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.11: chapter_16_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=6.06*10^26\n", +"p=2.7*10^3\n", +"h=6.6*10^-34\n", +"m=9.1*10^-31//kg\n", +"gs=2\n", +"ml=26.98*10^-3\n", +"//CALCULATIONS\n", +"a=(h*h/(2*m*100))*((3*3*n*p/(4*3.14*gs*ml))^(2/3))\n", +"r=a/(1.609*10^-19)\n", +"//results\n", +"printf(' \n fermi energy= % 1f ev',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: chapter_16_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"h=6.6*10^-34\n", +"c=3*10^8//m/sec\n", +"k=1.38*10^-23\n", +"t=1000//k\n", +"//CALCULATIONS\n", +"l=(h*c)/(5*k*t)\n", +"///results\n", +"printf(' \n wavelength associated with maximum radiation= % 1e ',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.5: chapter_16_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"h=6.6*10^-34//j sec\n", +"r=5.86*10^28\n", +"m=9.1*10^-31//kg\n", +"gs=2\n", +"//CALCULATIONS\n", +"a=(h*h/(2*m))*((3*r/(4*3.14*gs))^(2/3))\n", +"//resullts\n", +"printf(' \n fermi energy= % 1e',a)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/2-Thermal_Expansion.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/2-Thermal_Expansion.ipynb new file mode 100644 index 0000000..8289be5 --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/2-Thermal_Expansion.ipynb @@ -0,0 +1,326 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Thermal Expansion" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: chapter_2_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"ym=1.8*10^-4\n", +"yg=2.5*10^-5\n", +"//CALCULATIONS\n", +"s=yg/ym\n", +"//results\n", +"printf(' volume of vessel to be filled= % 1f 1/C',s)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12: chapter_2_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"l=1//m\n", +"ld1=0.7//m\n", +"ld2=0.78//m\n", +"d1=0\n", +"d2=30\n", +"vd1=l-(ld1*cosd(d1))\n", +"vd2=l-(ld2*cosd(d2))\n", +"//CALCULATIONS\n", +"H=((ld1*vd1)-(ld2*vd2))/(vd1-vd2)\n", +"//results\n", +"printf(' atmospheric pressure= % 1f m',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: chapter_2_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"r=1/1.035\n", +"t1=15//c\n", +"t2=25//c\n", +"//CALCULATIONS\n", +"x=-(t1-(t2*r))/(r-1)\n", +"//results\n", +"printf(' absolute zero on celsius scale for this gas= % 1f c',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.14: chapter_2_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p=0.76\n", +"t1=0//c\n", +"t2=100//c\n", +"T1=t1+273//k\n", +"T2=t2+273//k\n", +"//CALCULATIONS\n", +"p=(2*p*T2)/(T1+T2)\n", +"//results\n", +"printf(' pressure of the gas= % 1f m',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.15: chapter_2_example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"s=0.00018//1/c\n", +"dt=1//c\n", +"//CALCULATIONS\n", +"p=(s*dt)*100\n", +"//results\n", +"printf(' percentage change= % 1f',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: chapter_2_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=0//c\n", +"t2=20//c\n", +"g=0.000011//1/c\n", +"h=0.000019//1/c\n", +"l=41.628//cm\n", +"//CALCULATIONS\n", +"l20=l*(1+(h*(t2-t1)))\n", +"l0=l20/(1+(g*(t2-t1)))\n", +"//results\n", +"printf(' true length of rod at 20 c= % 1f C',l20)\n", +"printf(' true length of rod at 0 c= % 1f C',l0)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: chapter_2_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"l=3//m\n", +"t1=0//c\n", +"t2=40//c\n", +"f=0.000012//1/c\n", +"b=0.000018//1/c\n", +"y=2.1*10^11//N/m^2\n", +"a=(3.14*(0.6*10^-3)^2)/4///m\n", +"//CALCULATIONS\n", +"lb40=l*(1+(b*(t2-t1)))\n", +"lf40=l*(1+f*(t2-t1))\n", +"dl=lb40-lf40\n", +"F=y*a*dl*0.01/l\n", +"//results\n", +"printf(' extra tension of the wire= % 1f newton',F)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: chapter_2_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"l20=0.1//m\n", +"l1=0.0999//m\n", +"s=0.000011//1/c\n", +"t1=20\n", +"//CALCULATIONS\n", +"t=((l1-l20)/(l20*s))+20\n", +"//results\n", +"printf(' temperature the rod must be reduced is= % 1f C',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: chapter_2_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"s=1.9*10^-5//1/c\n", +"t1=15//c\n", +"t2=20//c\n", +"//CALCULATIONS\n", +"g=(1+(s*(t2-t1)))^(0.5)\n", +"h=g-1\n", +"d=h*24*60*60\n", +"//results\n", +"printf(' per day difference= % 1f sec',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: chapter_2_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"e=6000*10^-10//m\n", +"p=25\n", +"l=1.5*10^-2\n", +"t2=40\n", +"t1=0\n", +"sx=13*10^-7//1/c\n", +"sy=231*10^-7//1/c\n", +"sz=231*10^-7//1/c\n", +"//CALCULATIONS\n", +"s=((p*e)/(2*l*(t2-t1)))\n", +"y=sx+sy+sz\n", +"//results\n", +"printf(' alpha of crystal= % 1f 1/C',s)\n", +"printf(' coefficient of cubical expansion= % 1f 1/C',y)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb new file mode 100644 index 0000000..21b416d --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb @@ -0,0 +1,554 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: calorimetry" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: chapter_3_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m1=250//gm\n", +"m2=200//gm\n", +"l=336//j\n", +"w1=50//gm\n", +"m3=200//gm\n", +"t1=100//c\n", +"//calculations\n", +"M1=m1+m2+w1\n", +"J=t1*M1*4.2\n", +"k=l*m2\n", +"m=123.2\n", +"T=m1+m3+m\n", +"//results\n", +"printf(' total contents= % 1f gm',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12: chapter_3_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m1=10//kg\n", +"t1=80//c\n", +"t2=20//c\n", +"t3=150//c\n", +"t4=90//c\n", +"t=100//c\n", +"a=800//cal/kg\n", +"//calculations\n", +"h=m1*1000*(t1-t2)/1000\n", +"H=a*(t3-t)+540000+1000*(t-t4)\n", +"k=H/1000\n", +"x=h/k\n", +"//results\n", +"printf(' kg of steam required per hour= % 1f kg/hr',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: chapter_3_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p1=6//atm\n", +"p2=2//atm\n", +"ph=89//kg/m^3\n", +"v=30/1000//ml\n", +"t1=10//c\n", +"t3=31.5//c\n", +"T1=273+t1\n", +"t2=150//c\n", +"w1=0.210//kg\n", +"//calculations\n", +"m=(p1-p2)*273*ph*v/(T1*1000)\n", +"t4=(t1+t3)/2\n", +"h=m*(t2-t4)\n", +"H=w1*1000*4.18*(t3-t1)\n", +"c=H/h\n", +"//results\n", +"printf(' specific heat= % 1f j/kg*k',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: chapter_3_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"po=101396.1\n", +"p=1.293\n", +"vo=1/p\n", +"t=273\n", +"cp=961.4\n", +"//calculations\n", +"R=po*vo/t\n", +"cv=cp-R\n", +"//results\n", +"printf(' specific heat at constant volume= % 1f',cv)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: chapter_3_example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m=5//kg\n", +"m1=2.09*10^8\n", +"val=10^7//cal/kg\n", +"p=0.12\n", +"//calculations\n", +"w=p*m1/(60*60)\n", +"H=w/746\n", +"//results\n", +"printf(' average horse power= % 1f',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16: chapter_3_example_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"po=101396.16//N/m^2\n", +"vo=22.4//l\n", +"t=273\n", +"m=4*1000//gm\n", +"//calculations\n", +"R=po*vo/t\n", +"c=R/m\n", +"//results\n", +"printf(' pressure of the gas= % 1f j',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17: chapter_3_example_17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p1=1\n", +"p2=0.8\n", +"t1=25//c\n", +"t2=10//c\n", +"p=0.4\n", +"t3=61//c\n", +"t4=12//c\n", +"//calculations\n", +"p1=p*(t3-t4)\n", +"m=(t1-t2)\n", +"c=m/p1\n", +"//results\n", +"printf(' specific heat of liquid= % 1f cal/gm*c',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.19: chapter_3_example_19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p16=80//cm\n", +"v16=432//cc\n", +"t=273//k\n", +"po=76//cm\n", +"t=16//c\n", +"t16=273+t//k\n", +"T=273//k\n", +"poxy=0.0014\n", +"cfe=0.09\n", +"t1=15//c\n", +"t2=184//c\n", +"m1=2//gm\n", +"//calculations\n", +"v0=(p16*v16*T)/(po*t16)\n", +"m=poxy*v0\n", +"h=m1*cfe*(t1+t2)\n", +"l=h/m\n", +"//results\n", +"printf(' latent heat= % 1f cal',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: chapter_3_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"cag=56\n", +"cpb=31\n", +"cal=220\n", +"//CALCULATIONS\n", +"mag=1000/cag\n", +"mpb=1000/cpb\n", +"mal=1000/cal\n", +"//results\n", +"printf(' mass of silver= % 1f kg',mag)\n", +"printf(' mass of lead= % 1f kg',mpb)\n", +"printf(' mass of aluminium= % 1f kg',mal)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: chapter_3_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m1=0.5//kg\n", +"m2=0.09//kg\n", +"t1=19//c\n", +"t2=15//c\n", +"t3=38//c\n", +"t4=50//c\n", +"s=1000\n", +"//CALCULATIONS\n", +"A=[4000 -15.5; 23000 11.5]\n", +"b=[-360;1080]\n", +"c=A\b\n", +"R1=c(1,1)\n", +"R2=c(2,1)\n", +"//results\n", +"printf(' water equivalent of mercury= % 1f kg',R1)\n", +"printf(' \n specific heat of mercury= % 1f c /kg/c',R2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: chapter_3_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"c=10^6//calories\n", +"tw=100//sec\n", +"ta=74//sec\n", +"dw=1000//kg/m^3\n", +"da=800//Kg/m^3\n", +"t2=50//c\n", +"t1=40//c\n", +"//CALCULATIONS\n", +"hw=((dw*1000*10)+(c*(t2-t1)))\n", +"rw=hw/tw\n", +"C=(((rw*ta)/(t2-t1))-c)/da\n", +"printf(' specific heat of alcohol= % 1f calories/kg',C)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: chapter_3_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"mc=0.1//kg\n", +"vl1=150//cc\n", +"vl2=150//cc\n", +"hl1=600\n", +"gl1=1200\n", +"hl2=400\n", +"gl2=900\n", +"t1=50//c\n", +"t2=40//c\n", +"sc=100\n", +"r1=2\n", +"//CALCULATIIONS\n", +"m1=vl1*gl1/(10^6)\n", +"rc1=(m1*hl1+mc*sc)*r1\n", +"k= -rc1/t1\n", +"m2=vl2*gl2/(10^6)\n", +"b=(m2*hl2+mc*sc)\n", +"j=-k*t2\n", +"//results\n", +"printf(' rate of cooling= % 1f cal/min',j)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: chapter_3_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialistions\n", +"t1=80//c\n", +"t2=50//c\n", +"t3=60//c\n", +"t4=30//c\n", +"t=20\n", +"e=5\n", +"//CALCULATIONS\n", +"k=2.3026*log((t1-t)/(t2-t))/e\n", +"T=2.3026*log((t3-t)/(t4-t))/k\n", +"//results\n", +"printf(' time it will take = % 1f min',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: chapter_3_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"e=1.586//v\n", +"i=0.1444//amp\n", +"t=4*60//sec\n", +"m=0.3963//kg\n", +"T=1.219//k\n", +"wt=206.4\n", +"//CALCULATIONS\n", +"hg=e*i*t\n", +"c=hg/(m*T*4.18)\n", +"a=c*wt\n", +"printf(' atomic heat of lead= % 1f 1/k',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: chapter_3_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation if variables\n", +"m=1*10^-4//kg\n", +"v=0.0005//m^3\n", +"l=22.57*10^5//j\n", +"t1=15//c\n", +"p=6//kg/m^3\n", +"//calculations\n", +"H=m*l\n", +"h=v*p*(100-t1)*4.18\n", +"c=H/h\n", +"//results\n", +"printf(' specific heat of gas at constant volume= % 1f j',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: chapter_3_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"j1=21*10^5//j\n", +"j2=3.36*10^5//j\n", +"//calculations\n", +"x=j1*100/(j1+j2)\n", +"//results\n", +"printf(' percentage of water present will be frozen= % 1f',x)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/4-change_of_state.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/4-change_of_state.ipynb new file mode 100644 index 0000000..fb620ae --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/4-change_of_state.ipynb @@ -0,0 +1,427 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: change of state" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: chapter_4_exampe_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"r=52\n", +"svp=17.5//mm\n", +"//CALCULATIONS\n", +"p=(svp*r)/100\n", +"//results\n", +"printf(' SVP at dew point= % 1f mm',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12: chapter_4_exampe_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p=4.60//mm\n", +"p1=0.34//mm\n", +"t=0.007//c\n", +"r=760//mm\n", +"//CALCULATIONS\n", +"P=(p+(p1*t))\n", +"fp=r-P\n", +"d=r*t/fp\n", +"//results\n", +"printf(' lowering of melting point of ice= % 5f C',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: chapter_4_exampe_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"v2=1.677//m3\n", +"v1=0.001//m3\n", +"dp=0.76*13600*9.81\n", +"t=100//c\n", +"T=t+273//k\n", +"L=540000//cal//kg\n", +"//CALCULATIONS\n", +"dT=(dp*T*(v2-v1))/L\n", +"//results\n", +"printf(' increase in boiling point= % 1f C',dT)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.15: chapter_4_exampe_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=18//c\n", +"t2=19//c\n", +"t3=18.6//c\n", +"t4=23//c\n", +"t5=24//c\n", +"t6=23.7//c\n", +"svp1=15.46//mm\n", +"svp2=16.46//mm\n", +"svp4=21.02//mm\n", +"svp5=22.32//mm\n", +"//CALCULATIONS\n", +"svp3=svp1+((svp2-svp1)/(t2-t1))\n", +"svp6=svp4+((svp4-svp5)/(t4-t5))\n", +"rh=svp3*100/svp6\n", +"//results\n", +"printf(' relative humidity= % 1f ',rh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: example_4_chapter_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"t1=20//c\n", +"m1=10//gm\n", +"t2=-80//c\n", +"t2=15//c\n", +"m2=10.77//gm\n", +"t3=10//c\n", +"c=0.5\n", +"//CALCULATIONS\n", +"A=[5 -10;5 -10.77]\n", +"b=[550;488.5]\n", +"c=A\b\n", +"R1=c(1,1)\n", +"R2=c(2,1)\n", +"//results\n", +"printf(' latent heat of fusion of ice= %1f cal/gm',R2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: chapter_4_exampe_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"c=0.58\n", +"m=4//gm\n", +"ms=5//gm\n", +"t=78//c\n", +"t1=80//c\n", +"x1=10//cm\n", +"x2=8.5//cm\n", +"c1=0.05\n", +"c2=0.048\n", +"t2=100//c\n", +"t3=27//c\n", +"//CALCULATIONS\n", +"Hal=m*c*t\n", +"m1=Hal/t1\n", +"m2=m1*x1/x2\n", +"Hp=m2*80\n", +"H1=ms*(t2-t3)*c1\n", +"H2=ms*c2*t3\n", +"L=(Hp-H1-H2)/ms\n", +"//results\n", +"printf(' latent heat of fusion= % 1f cal/gm',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: chapter_4_exampe_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"d=2*10^-3//m\n", +"x=0.07//m\n", +"m1=2.2*10^-3//gm\n", +"pice=920//kgm^-3\n", +"pwater=1000//kgm^-3\n", +"lice=80000//cal/kg\n", +"//CALCULATIONS\n", +"a=22*d*d/(4*7)\n", +"v=x*a\n", +"v1=1/pice\n", +"v2=1/pwater\n", +"dv=v1-v2\n", +"m2=v/dv\n", +"h=lice*m2\n", +"L=h/m1\n", +"printf(' latent heat of vapourisation= % 2f cal/kg',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: chapter_4_exampe_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"ms=0.0055//kg\n", +"t1=100//c\n", +"t2=15//c\n", +"t3=26.8//c\n", +"m1=250/1000//kg\n", +"m2=16.2/1000//kg\n", +"l=22.572*10^5//kg\n", +"//calculations\n", +"h=(m1+m2)/(t3-t2)\n", +"x=(h-(ms*l))/(t1-t3-l)\n", +"p=x*100/ms\n", +"//results\n", +"printf(' perecntage of water in steam= % 5f ',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: chapter_4_exampe_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//intialisation\n", +"r=1.7*10^-6//m^3/sec\n", +"t1=3.56//c\n", +"pw=1000//kg/m^3\n", +"r1=0.34*10^-6//m^3/sec\n", +"t2=15//c\n", +"bp=360//c\n", +"c=33\n", +"pl=13600//kg/m^3\n", +"//CALCCULATIONS\n", +"m=r*pw*60\n", +"h1=m*1000*t1\n", +"h2=r1*pl*(bp-t2)*c\n", +"L=(h1-h2)/(r1*pl)\n", +"//results\n", +"printf(' latent heat of vaporisation= % 1f cal/kg',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: chapter_4_exampe_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p1=75.5//cm\n", +"v1=123//cc\n", +"t0=273//k\n", +"t1=15//c\n", +"T1=t0+t1\n", +"p0=76//cm\n", +"r=1.43//gm/litre\n", +"l=51//cal/gm\n", +"t2=-183//c\n", +"m=0.495//gm\n", +"//calculations\n", +"v0=p1*v1*t0/(p0*T1)\n", +"h=r*v0*l/1000\n", +"c=(h/(m*(t1-t2)))\n", +"//results\n", +"printf(' mean specific heat = % 1f calC/gm/deg',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: chapter_4_exampe_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p=0.76\n", +"v=1650//cc\n", +"m=1//gm\n", +"r=13600//kg/m3\n", +"//CALCULATIONS\n", +"w=(p*9.81*r*(v-1)*10^-6)/4.18\n", +"ih=540-w\n", +"//results\n", +"printf(' internal latent heat of steam= % 1f cal',ih)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: chapter_4_exampe_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"x1=17.5//mm\n", +"x2=9.2//mm\n", +"r=0.7\n", +"//CALCULATIONS\n", +"avp=x1*r\n", +"dsvp=avp-x2\n", +"f=dsvp*100/avp\n", +"//results\n", +"printf(' fraction of water vapour condensed= % 1f ',f)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/5-Kinetic_theory_of_Heat.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/5-Kinetic_theory_of_Heat.ipynb new file mode 100644 index 0000000..7529df9 --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/5-Kinetic_theory_of_Heat.ipynb @@ -0,0 +1,152 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Kinetic theory of Heat" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: chapter_5_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"h=50//m\n", +"g=9.8//m/sec2\n", +"l=1000\n", +"j=4.2//j/cal\n", +"//calculations\n", +"q=h*g/j\n", +"t=q/l\n", +"//results\n", +"printf(' difference in temperature of water= % 1f C',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: chapter_5_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"t1=327//c\n", +"t2=47.6//c\n", +"c=30//cal/kg\n", +"l=6000//cal/kg\n", +"j=4.2//j/cal\n", +"//CALCULATIONS\n", +"h=c*(t1-t2)+l\n", +"v=sqrt(2*j*h)\n", +"//results\n", +"printf(' velocity of bullet= % 1f m/sec',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: chapter_5_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"e=3//v\n", +"i=2//amp\n", +"e1=3.75//v\n", +"i1=2.5//amp\n", +"t=2//c\n", +"m=30//gm/min\n", +"m1=48//gm/min\n", +"//CALCULATIONS\n", +"p=(e*i-e1*i1)/(t*(m-m1)/44.444)\n", +"//results\n", +"printf(' J= % 1f j/cal',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: chapter_5_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"c=1000\n", +"t=1//c\n", +"f=1//f\n", +"J=4.18//j/cal\n", +"g=9.8//m/sec2\n", +"//CALCULATIONS\n", +"h=c*t*J/g\n", +"h1=h*f*5/9\n", +"//results\n", +"printf(' height pf waterfall to rasie 1 c= % 1f m',h)\n", +"printf(' height of waterfall to raise 1 f= % 1f m',h1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/6-kinetic_theory_of_gases.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/6-kinetic_theory_of_gases.ipynb new file mode 100644 index 0000000..7cf1014 --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/6-kinetic_theory_of_gases.ipynb @@ -0,0 +1,448 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: kinetic theory of gases" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: chapter_6_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"r=8.3//j/mol/k\n", +"J=4.2//j/cal\n", +"T=273\n", +"m=2//gm\n", +"//CALCULATIONS\n", +"ke=(3*r*T/(2*m*J))\n", +"//results\n", +"printf(' ke of one gm of hydrogen= % 1f calories',ke)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: chapter_6_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p0=0.76*13600*9.81\n", +"m=1.785*10^-4//kg\n", +"v0=0.001/m\n", +"T0=273//k\n", +"g=1.67\n", +"cp=1250\n", +"//CALCULATIONS\n", +"r=p0*v0/T0\n", +"J=r*g/((g-1)*cp)\n", +"//results\n", +"printf(' mechanical equivalent of heat= % 1f joules/cal',J)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: chapter_6_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=1.7*10^-5//newton/m2/unit vel gradient\n", +"p=10^5//newton//m2\n", +"d=1.2//kg/m3\n", +"//CALCULATIONS\n", +"l=n*sqrt(3/(d*p))\n", +"f=p/n\n", +"//results\n", +"printf('.mean free path= % 1e m',l)\n", +"printf(' \ncollision frequency= % 1f per second',f)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: chapter_6_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=166*10^-7//kg/m/sec\n", +"k=2.7*10^25//m^-3\n", +"d=1.25//kg/m^3\n", +"c=450//m/sec\n", +"//CALCULATIONS\n", +"l=3*n/(d*c)\n", +"f=c/l\n", +"di=sqrt(1/(sqrt(2)*%pi*k*l))\n", +"//results\n", +"printf(' mean free path= % 1e m',l)\n", +"printf(' \ncollision frequency= % 1e c',f)\n", +"printf(' \navg velocity= % 1e m',di)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: chapter_6_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"m=40//kg\n", +"v=22.4//m^-3\n", +"n=2.1*10^-5\n", +"r=8314//j/mol/k\n", +"T=273//k\n", +"//CALCULATIONS\n", +"d=m/v\n", +"c=sqrt(3*r*T/m)\n", +"l=(3*n)/(d*c)\n", +"f=c/l\n", +"//results\n", +"printf(' mean freepath= % 1e m',l)\n", +"printf(' \ncollision frequency= % 1f ',f)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: chapter_6_example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"l1=23*10^-6\n", +"l0=19*10^-6\n", +"d=0.1785\n", +"p=10^5//n\n", +"//CALCULATIONS\n", +"df=(l1-l0)*sqrt(3/(p*d))/0.4\n", +"//results\n", +"printf(' difference in mean free path= % 1e m',df)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.19: chapter_6_example_19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"f=5\n", +"r=2\n", +"//CALCULATIONS\n", +"e=f/2\n", +"g=r/2\n", +"p=g*100/e\n", +"//results\n", +"printf(' fraction used to increase rotational energy= % 1f ',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.20: chapter_6_example_20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"s1=1//m/sec\n", +"s2=2//m/sec\n", +"s3=3//m/sec\n", +"s4=4//m/sec\n", +"s5=5//m/sec\n", +"n1=4\n", +"n2=2\n", +"n3=8\n", +"n4=6\n", +"n5=5\n", +"//CALCULATIONS\n", +"u=(n1*s1+n2*s2+n3*s3+n4*s4+n5*s5)/(n1+n2+n3+n4+n5)\n", +"v=sqrt((n1*s1*s1+n2*s2*s2+n3*s3*s3+n4*s4*s4+n5*s5*s5)/(n1+n2+n3+n4+n5))\n", +"//results\n", +"printf(' mean speed of molecules= % 1f m/sec',u)\n", +"printf(' \nrms speeed of molecules= % 1f m/sec',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: chapter_6_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"n=3\n", +"r=2\n", +"//CALCULATIONS\n", +"i=3*n-3\n", +"v=i-r\n", +"//results\n", +"printf(' vibratory degree of freedom= % 1f ',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: chapter_6_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"T=273//k\n", +"m=35.5//kg\n", +"r=8314.3//j/mol/k\n", +"//CALCULATIONs\n", +"c=sqrt(3*T*r/(2*m))\n", +"//results\n", +"printf(' rms velocity = % 1f m/sec',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: chapter_6_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"m=2//kg\n", +"T=273//k\n", +"r=8314.3//j/mol/k\n", +"//CALCULATIONS\n", +"c=sqrt(3*r*T/m)\n", +"Ti=(4*c*c*m/(3*r))\n", +"C=Ti-273\n", +"//results\n", +"printf(' temperature at which rms speed will double is= % 1f c',C)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: chapter_6_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p=1.013*10^5//newton/m2\n", +"d=0.09//kg/m3\n", +"t1=27//c\n", +"T=273\n", +"T1=t1+T//k\n", +"//CALCULATIONS\n", +"c1=sqrt(3*p/d)\n", +"c2=c1*sqrt(T1/T)\n", +"cb=c2*8/(3*%pi)\n", +"cm=c2*sqrt(2/3)\n", +"//results\n", +"printf(' avg velocity= % 1f m/sec',cb)\n", +"printf(' \nmost probable velocity= % 1f m/sec',cm)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: chapter_6_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"e=4*10^-3//erg\n", +"p=1*13.6*981\n", +"//calculations\n", +"kt=2*e/3//erg\n", +"n=p/kt\n", +"//results\n", +"printf(' number of molecules = % 1f',kt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: chapter_6_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"r=8.32//j/mol/k\n", +"N=6.06*10^23\n", +"t=723\n", +"T=t+273\n", +"//calculations\n", +"ke=(3*r*T)/(2*N)\n", +"ke1=ke*N\n", +"//results\n", +"printf(' mean translational kinetic energy= % 1f J',ke1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/7-continuity_of_state.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/7-continuity_of_state.ipynb new file mode 100644 index 0000000..d55c7df --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/7-continuity_of_state.ipynb @@ -0,0 +1,285 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: continuity of state" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.10: chapter_7_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"m=2*10^-3//kg\n", +"R=8.31//j/mol/k\n", +"p=2*10^5\n", +"v=8.2*10^-4\n", +"a=0.136//pa m^6\n", +"M=28*10^-3//kg/\n", +"//CALCULATIONS\n", +"t=(p*v*M)/(R*m)\n", +"T=(M/(m*R))*(p+(m*m*a/(M*M*v*v)))*(v-(m*b/M))\n", +"//results\n", +"printf(' \n temperature for a perfect gas= % 1f k',t)\n", +"printf(' \n temperature for vanderwaals gas= % 1f k',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.11: chapter_7_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"a=0.132//nm^4/mole^2\n", +"b=3.12*10^-5//m^3/mole^2\n", +"p=5*10^5//Nm^-2\n", +"v=20*10^-3//m3\n", +"R=8.4//j/mole/k\n", +"v2=2*10^-3//m3\n", +"p1=5//pa\n", +"//CALCULATIONS\n", +"t=((p+(a/(v*v)))*(v-b))/(5*R)\n", +"p2=(p1*v)/v2\n", +"//results\n", +"printf(' \n temperature = % 1f k',t)\n", +"printf(' \n pressure= % 1f pa',p2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.12: chapter_7_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"t1=273//k\n", +"p1=1*10^5//N/m2\n", +"p2=2*10^5//N/m2\n", +"v=10^-6//m3\n", +"a=2.73*10^-10//m4 N\n", +"b=1.03*10^-9//m3\n", +"//CALCULATIONS\n", +"t2=t1+(t1*(p2-p1))/(p1+(a/(v*v)))\n", +"//results\n", +"printf(' \n temperature of gas if pressure is doubled= % 1f k',t2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: chapter_7_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"R=82.07//cm3.atmos.per k\n", +"t=132//k\n", +"p=37.2//atm\n", +"//CALCULATIONS\n", +"a=(27*R*R*t*t)/(64*p)\n", +"b=(R*t)/(8*p)\n", +"//results\n", +"printf(' a= % 1f atmos cm ^6',a)\n", +"printf(' \nb= % 1f cm^3',b)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: chapter_7_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p=2.26//atmos\n", +"m=1.014*10^6*4\n", +"R=8.3*10^7\n", +"d=0.069//gm/cm3\n", +"//CALCULATIONS\n", +"t=(8*p*m)/(3*R*d)\n", +"//results\n", +"printf(' critical temperature of helium= % 1f K',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: chapter_7_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"a=0.0072\n", +"b=0.002\n", +"p=1\n", +"v=1\n", +"t=273//k\n", +"//CALCULATIONS\n", +"R=((p+(a/(v*v)))*(v-b))/t\n", +"Tc=(8*a)/(27*R*b)\n", +"TC=Tc-t\n", +"Tb=3.375*Tc\n", +"TB=Tb-t\n", +"//results\n", +"printf(' critical temperature of Co2= % 1f c',TC)\n", +"printf(' \nboyle temperature of Co2= % 1f k',Tb)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: chapter_7_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"a=0.0072//pa cc^2\n", +"b=0.002\n", +"p1=76*13.6*980\n", +"p2=0.76*13600*9.8\n", +"//CALCULATIONS\n", +"a1=a*p2/p1\n", +"//results\n", +"printf(' value of a in MKS/SI units= % 1f pa m^6',a1)\n", +"printf(' \nvalue of b in MKS/SI units= % 1f ',b)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.9: chapter_7_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"a=1.64*10^-2//pa m^6 /mole^2\n", +"b=2.17*10^-5//m^3/mole\n", +"t=300//k\n", +"v=10^-3//m^3/mole\n", +"R=8.31//j/mole/k\n", +"tc=33.2\n", +"pc=1.295*10^6\n", +"vc=6.5*10^-5\n", +"//CALCULATIONS\n", +"p=(((R*t)/(v-b))-(a/(v*v)))\n", +"p1=(R*t)/v\n", +"r=(8*pc*vc)/(3*tc)\n", +"p2=(((r*t)/(v-b))-(a/(v*v)))\n", +"p3=(r*t)/v\n", +"//results\n", +"printf(' value of pressure at 300k= % 1f pa',p)\n", +"printf(' \n pressure using ideal gas condition= % 1f pa',p1)\n", +"printf(' \nvalue of R at critical point= % 1f J/mole/k',r)\n", +"printf(' \n using r value in vanderwaals equation p = % 1f pa',p2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb new file mode 100644 index 0000000..24d965b --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb @@ -0,0 +1,899 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: thermodynamics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: chapter_8_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=20+273//k\n", +"T2=273//k\n", +"m=2//kg\n", +"L=80000//cal/kg\n", +"//CALCULATIONS\n", +"Q2=m*L/3600\n", +"w=(T1-T2)*Q2*4.2/(T2)\n", +"//results\n", +"printf(' \n minimum power output of the motor= % 1f H.P',w/746)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: chapter_8_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=20+273//k\n", +"T2=273//k\n", +"m=2//kg\n", +"L=80000//cal/kg\n", +"//CALCULATIONS\n", +"Q2=m*L/3600\n", +"w=(T1-T2)*Q2*4.2/(T2)\n", +"//results\n", +"printf(' \n minimum power output of the motor= % 1f H.P',w/746)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.12: chapter_8_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p=10^5//N/m^2\n", +"l=1//m\n", +"a=0.2//m^2\n", +"n=5\n", +"//CALCULATIONS\n", +"power=2*p*l*a*n/746\n", +"//results\n", +"printf(' \n horse power of engine= % 1f H P',power)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.13: chapter_8_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dp=1//atm\n", +"L=80000//cal\n", +"T=273//k\n", +"r=11/10\n", +"//CALCULATIONS\n", +"dv=(1-r)/1000\n", +"dt=T*dv*(13600*9.81*0.76)/(L*4.2)\n", +"//results\n", +"printf(' \n depression in melting point of ice= % 1f c',-dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.14: chapter_8_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dt=0.5//c\n", +"L=80000*4.2//J/kg\n", +"T=273//k\n", +"dv=0.000091//m^3\n", +"//CALCULATIONS\n", +"dp=(L*dt)/(T*dv*100000)\n", +"//results\n", +"printf(' \n pressure= % 1f atm',dp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.15: chapter_8_example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dp=1.01*10^5//Nm^-2\n", +"L=4563000*4.2//J\n", +"dv=18.7*10^-3//m^3\n", +"T=353//k\n", +"//CALCULATIONS\n", +"dT=(dp*T*dv)/L\n", +"//results\n", +"printf(' \n change in melting point= % 1f c',dT)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.16: chapter_8_example_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T=373//k\n", +"L=537000*4.2//J\n", +"dp=0.0212*13600*9.81\n", +"dv=1.673//m^3\n", +"//CALCULATIONS\n", +"dT=dp*T*dv/L\n", +"//results\n", +"printf(' \n change in temperature of boiling water= % 1f c',dT)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.17: chapter_8_example_17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variabes\n", +"dp=(100-1)*1.01*10^5\n", +"L=24500//J\n", +"T=600//k\n", +"d2=11010\n", +"d1=10650\n", +"//CALCULATIONS\n", +"dv=(1/d2)-(1/d1)\n", +"dT=dp*T*dv/L\n", +"mp=T+(-dT)\n", +"//results\n", +"printf(' \n new melting point= % 1f c',mp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.18: chapter_8_example_18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p=1.5//kg/cm2\n", +"T=373//k\n", +"v=1600//cc\n", +"L=2240000//J/kg\n", +"//CALCULATIONS\n", +"dp=((p*1000*980)-(1.01*10^6))/10\n", +"dv=(v-1)/1000\n", +"dT=dp*T*dv/L\n", +"T1=dT+T-273\n", +"//results\n", +"printf(' \n new temperature of cooker= % 1f c',T1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.19: chapter_8_example_19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"c1=1000\n", +"T=373//k\n", +"L=539300//cal\n", +"r=604// cal/kg/deg\n", +"//CALCULATIONS\n", +"c2=c1-(r)-(L/T)\n", +"//results\n", +"printf(' \n specific heat of saturated steam= % 1f cal/kg',c2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: chapter_8_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"Q=50//cal\n", +"W=20//cal\n", +"Qi=36//cal\n", +"Wi=-13//cal\n", +"ui=10//cal\n", +"ub=22//cal\n", +"//CALCULATIONS\n", +"du=Q-W\n", +"Wibf=Qi-du\n", +"Qfi=du+Wi\n", +"Uf=du+ui\n", +"Qbf=Uf-ub\n", +"//results\n", +"printf(' \n Wibf= % 1f cal',Wibf)\n", +"printf(' \n Qfi= % 1f cal',Qfi)\n", +"printf(' \n Uf= % 1f cal',Uf)\n", +"printf(' \n Qbf= % 1f cal',Qbf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.20: chapter_8_example_20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=0.1//kg\n", +"v=1.01*10^-4//m^3\n", +"vs=0.167404//m^3\n", +"t1=101//c\n", +"t2=99//c\n", +"p1=0.788//m\n", +"p2=0.7337//m\n", +"T=373//k\n", +"//CALCULATIONS\n", +"v1=v/m\n", +"v2=vs/m\n", +"dv=v2-v1\n", +"dt=t1-t2\n", +"dp=p1-p2\n", +"dP=dp*13600*9.81\n", +"L=dP*T*dv/(dt*4.2)\n", +"//results\n", +"printf(' \n latent heat of steam= % 1f cal/kg',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.21: chapter_8_example_21.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=1100//k\n", +"T3=200//k\n", +"r=0.5\n", +"//CALCULATIONS\n", +"T=(T1-(T3*r))/(1+r)\n", +"//results\n", +"printf(' \n value of T= % 1f k',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.22: chapter_8_example_22.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T2=500//k\n", +"T1=1000//k\n", +"//CALCULATIONS\n", +"r=1-(T2/T1)\n", +"x=T1/r\n", +"//results\n", +"printf(' \n value of x= % 1f k',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.23: chapter_8_example_23.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=900//k\n", +"T2=300//k\n", +"Q1=10^6//cal\n", +"//CALCULATIONS\n", +"r=(1-(T2/T1))\n", +"r1=r*100\n", +"w=r*Q1\n", +"w1=w*4.2//J\n", +"w2=w1/(3.6*10^6)\n", +"w3=w1/(1.609*10^-19)\n", +"//results\n", +"printf(' \n efficiency= % 1f ',r1)\n", +"printf(' \n work in KWH= % 1f KWH',w2)\n", +"printf(' \n work in ev= % 1e ev',w3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.24: chapter_8_example_24.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T2=300///k\n", +"T1=900//k\n", +"T3=600//k\n", +"Q2=15000//k.cal\n", +"Q1=12000//k.cal\n", +"//CALCULATIONS\n", +"na=1-(T2/T1)\n", +"nb=1-(T2/T3)\n", +"w1=Q1*na\n", +"w2=Q2*nb\n", +"//results\n", +"printf(' \n w1= % 1f kcal',w1)\n", +"printf(' \n w2= % 1f kcal',w2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.25: chapter_8_example_25.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variab;es\n", +"l=420//m\n", +"g=9.81//m/sec^2\n", +"c=1000\n", +"//CALCULATIONS\n", +"dt=(g*l)/(c*4.2)\n", +"//results\n", +"printf(' \n difference in temperature= % 1f c',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.26: chapter_8_example_26.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=0.005//kg\n", +"c=0.17//kcal/kg/c\n", +"t1=12.4//c\n", +"t2=10.2//c\n", +"//CALCULATIONS\n", +"du=m*c*(t1-t2)*4.2*1000\n", +"//results\n", +"printf(' \n change in internal energy= % 1f J',du)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.27: chapter_8_example_27.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dq=-80\n", +"dv=0.091*10^-6//m^3\n", +"p=1.013*10^5//n/m^2\n", +"//CALCULATIONS\n", +"du=dq-(p*dv/46)\n", +"//results\n", +"printf(' \n change in internal energy= % 1f cal',du)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.28: chapter_8_example_28.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p=1*10^5//n/m^2\n", +"v2=2.6//litre\n", +"v1=2.2//litre\n", +"dq=250//j\n", +"//CALCULATIONS\n", +"dv=(v2-v1)*10^-3\n", +"dw=p*dv\n", +"du=dq-dw\n", +"//results\n", +"printf(' \n change in internal energy= % 1f J',du)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.29: chapter_8_example_29.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"v2=6//lit\n", +"v1=2//lit\n", +"r=3/2\n", +"p1=1.01*10^5//n/m^2\n", +"//CALCULATIONS\n", +"g=(r+1)/r\n", +"p2=p1*(v2/v1)^g\n", +"w=(1/(g-1))*((p1*v2*10^-3)-(p2*v1*10^-3))\n", +"//results\n", +"printf(' \n work done= % 1f J',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: chapter_8_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"g=1.4\n", +"T1=15+273//k\n", +"r=2\n", +"p=2//atm\n", +"r1=0.5\n", +"//CALCULATIONS\n", +"T2=T1*r^(g-1)\n", +"t2=T1*r1^((g-1)/g)\n", +"//results\n", +"printf(' \n final temperature= % 1f k',T2)\n", +"printf(' \n temperature= % 1f k',t2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: chapter_8_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"r=1/20\n", +"p1=1//atm\n", +"g=1.4\n", +"T1=273//k\n", +"//CALCULATIONS\n", +"p2=p1/r\n", +"pad=p2^g\n", +"T2=T1*((1/r)^(g-1))\n", +"dt=T2-T1\n", +"//RESULTS\n", +"printf(' \n pressure required= % 1f atm',p2)\n", +"printf(' \n pressure for adiabatic conditions= % 1f atm',pad)\n", +"printf(' \n rise in temperature= % 1f c',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: chapter_8_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"R=8400//j/mole\n", +"T1=273//k\n", +"g=1.66\n", +"r=2\n", +"//CALCULATIONS\n", +"T2=T1*r^(g-1)\n", +"w=(R*(T1-T2))/(22400*(g-1))\n", +"wi=R*T1*log(1/r)/22400\n", +"//results\n", +"printf(' \n amount of work done= % 1f J',w)\n", +"printf(' \n isothermal work done= % 1f J',wi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: chapter_8_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"r1=2\n", +"r=2\n", +"rv=0.75\n", +"//CALCULATIONS\n", +"g=log(r1/rv)/log(r)\n", +"//results\n", +"printf(' \n gamma value= % 1f ',g)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: chapter_8_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"t0=273//k\n", +"d0=1.29//kg/m^3\n", +"p=0.75//m\n", +"t=273+17//k\n", +"p0=0.76//m\n", +"v=342.15//m/sec\n", +"//CALCULATIONS\n", +"d=t0*d0*p/(t*p0)\n", +"g=(v*v*d)/(p*13600*9.81)\n", +"//results\n", +"printf(' \n gamma value= % 1f ',g)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: chapter_8_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"n=0.5\n", +"n1=0.6\n", +"T2=27+273//k\n", +"//CALCULATIONS\n", +"T1=T2/(1-n)\n", +"T=T2/(1-n1)\n", +"dt=T-T1\n", +"//results\n", +"printf(' \n source tempperature must be raised by= % 1f c',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: chapter_8_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"w=100//watt\n", +"T2=100+273//k\n", +"T1=273//k\n", +"L=80000//cal/kg\n", +"//CALCULATIONS\n", +"dt=T2-T1\n", +"Q1=T2*w/dt\n", +"m=(Q1-w)*60/(4.2*L)\n", +"//results\n", +"printf(' \n mass of ice melts in 1 min= % 1f kg',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: chapter_8_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"L=80000//cal/kg\n", +"T1=27+273//k\n", +"T2=0+273//k\n", +"//CALCULATIONS\n", +"Q1=T1*L/T2\n", +"w=4.2*(Q1-L)\n", +"c=L/(Q1-L)\n", +"//results\n", +"printf(' \n coefficient of performance= % 1f ',c)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/9-entropy.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/9-entropy.ipynb new file mode 100644 index 0000000..1017bdd --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/9-entropy.ipynb @@ -0,0 +1,512 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: entropy" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10: chapter_9_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"st=1.75\n", +"sw=0.30\n", +"t=100//c\n", +"T=273+t//k\n", +"//CALCULATIONS\n", +"L=T*(st-sw)\n", +"//results\n", +"printf(' \n specific latent heat of steam= % 1f cal/gm',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11: chapter_9_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"r=3\n", +"n=2\n", +"R=8314\n", +"//CALCULATIONS\n", +"ds=2.3026*n*R*log(r)\n", +"//results\n", +"printf(' \n change in entropy= % 1f j/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.13: chapter_9_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m1=90//gm\n", +"m2=10//gm\n", +"T1=373//k\n", +"T2=273//k\n", +"T3=331.2//k\n", +"l=540\n", +"//CALCULATIONS\n", +"ds=(m1+m2)*log(T3/T2)-m2*l/T1+m2*log(T3/T1)\n", +"//results\n", +"printf(' change in entropy = % 1f cal/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.14: chapter_9_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m1=3//gm\n", +"m2=28\n", +"ds=0.621//J/k\n", +"//CALCULATIONS\n", +"r=ds*m2/(m1*8.31)\n", +"a=2.3026^r\n", +"//results\n", +"printf(' change in volume = % 1f ',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.15: chapter_9_example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"e=0.31\n", +"e1=1.76//cal/gm/k\n", +"t=100//c\n", +"T=273+t//k\n", +"//-CALCULATIONS\n", +"ds=e1-e\n", +"dq=ds*T\n", +"//results\n", +"printf(' \n heat of vaporisation at this temperature= % 1f cal/gm',dq)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.16: chapter_9_example_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"i=3//amp\n", +"r=10//ohm\n", +"t=27//c\n", +"T=273+t//k\n", +"//CALCULATIONS\n", +"dq1=0\n", +"ds1=dq1/T\n", +"dq2=i*i*r\n", +"ds2=dq2/T\n", +"//results\n", +"printf(' \n change in entropy of resistor= % 1f j/k',ds1)\n", +"printf(' \n change in entropy of universe= % 1f j/k',ds2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.17: chapter_9_example_17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m1=1//gm\n", +"m2=28\n", +"cv=0.18\n", +"T2=373//k\n", +"T1=323//k\n", +"//CALCULATIONS\n", +"ds=m1*cv*log(T2/T1)/m2\n", +"//results\n", +"printf(' change in entropy = % 1f cal/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.18: chapter_9_example_18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=40//k\n", +"T2=120//k\n", +"c1=0.076\n", +"c2=0.00026\n", +"c3=0.15\n", +"//CALCULATIONS\n", +"r1=c1*(T2-T1)\n", +"r2=(c2/2)*(T2^2-T1^2)\n", +"r3=c3*log(T2/T1)\n", +"ds=5*(r1-r2-r3)\n", +"//results\n", +"printf(' change in entropy = % 1f cal/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: chapter_9_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"m=10//gm\n", +"l=80//\n", +"t=273//k\n", +"//CALCULATIONS\n", +"dq=m*l\n", +"ds=dq/t\n", +"//results\n", +"printf(' \n change in entropy= % 1f cal/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: chapter_9_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=0.001//kg\n", +"l=80000//cal/kg\n", +"T1=273//k\n", +"T2=373//k\n", +"s=1000\n", +"l1=540000//cal/kg\n", +"//CALCULATIONS\n", +"ds=(m*l/T1)+(m*s*log(T2/T1))+(m*l1/T2)\n", +"//results\n", +"printf(' change in entropy = % 1f cal/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: chapter_9_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=0.001//kg\n", +"s=500//cal/kg\n", +"li=80000//cal/kg\n", +"l1=540000//cal/kg\n", +"T1=273//k\n", +"T2=263//k\n", +"T3=373//k\n", +"s1=1000//cal/kg\n", +"//CALCULATIONS\n", +"d1=m*s*log(T1/T2)\n", +"d2=m*li/T1\n", +"d3=m*s1*log(T3/T1)\n", +"d4=m*l1/T3\n", +"d5=d4+d3+d2+d1\n", +"//results\n", +"printf(' increase in entropy = % 1f cal/k',d5)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: chapter_9_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m1=0.08//kg\n", +"m2=0.12//kg\n", +"t1=20//c\n", +"t2=50//c\n", +"T1=t1+273//k\n", +"T2=t2+373//k\n", +"s=1000//cal/kg\n", +"//CALCULATIONS\n", +"t=(m2*t2+m1*t1)/(m1+m2)\n", +"T3=t+273\n", +"s1=m1*s*log(T3/T1)\n", +"s2=m2*s*log(T3/T2)\n", +"ds=s1+s2\n", +"//results\n", +"printf(' change in entropy of universe = % 1f cal/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: chapter_9_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"r=4\n", +"//CALCULATIONS\n", +"w=log(r)\n", +"//results\n", +"printf(' change in entropy = % 1f R/J cal for each',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: chapter_9_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=1//kg\n", +"c=1000\n", +"T1=273//k\n", +"T2=50+273//k\n", +"l=571700//cal/kg\n", +"//CALCULATIONS\n", +"ds=m*c*log(T2/T1)+m*l/T2\n", +"//results\n", +"printf(' difference in entropy = % 1f cal per degree c',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: chapter_9_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=0.01//kg\n", +"T1=800//k\n", +"T2=500//k\n", +"T3=400//k\n", +"s1=60//cal/kg/k\n", +"s2=70//cal/kg/k\n", +"l=14000//cal/kg\n", +"//CALCULATIONS\n", +"ds=m*s1*log(T2/T3)+m*l/T2+m*s2*log(T1/T2)\n", +"//results\n", +"printf(' change in entropy = % 1f cal/k',ds)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: chapter_9_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"c1=0.08\n", +"c2=0.003\n", +"c3=0.1\n", +"T2=100//k\n", +"T1=50//k\n", +"//CALCULATIONS\n", +"r1=c1*(T2-T1)\n", +"r2=(c2/2)*(T2^2-T1^2)\n", +"r3=c3*log(T2/T1)\n", +"ds=5*(r1-r2-r3)\n", +"//results\n", +"printf(' change in entropy = % 1f cal/k',ds)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit