diff options
Diffstat (limited to 'Engineering_Physics_by_H_K_Malik/10-ELECTROMAGNETISM.ipynb')
-rw-r--r-- | Engineering_Physics_by_H_K_Malik/10-ELECTROMAGNETISM.ipynb | 445 |
1 files changed, 445 insertions, 0 deletions
diff --git a/Engineering_Physics_by_H_K_Malik/10-ELECTROMAGNETISM.ipynb b/Engineering_Physics_by_H_K_Malik/10-ELECTROMAGNETISM.ipynb new file mode 100644 index 0000000..27aa1c7 --- /dev/null +++ b/Engineering_Physics_by_H_K_Malik/10-ELECTROMAGNETISM.ipynb @@ -0,0 +1,445 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: ELECTROMAGNETISM" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.15: Calculation_of_The_total_charge_within_volume.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"n = 2000 // flux lines enter in given volume in Vm\n", +"n_ = 4000 // flux lines diverge from given volume in Vm\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 15 on page no. 10.42\n", +"printf('\n # PROBLEM 15 # \n')\n", +"fi = n_ - n\n", +"q = e0 * fi\n", +"printf('Standard formula used \n fi = q/e_')\n", +"disp(q,' The total charge within volume(in C) = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.16: Calculation_of_The_total_charge_enclosed_by_closed_surface.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"n = 20000 // flux lines entering in given volume in Vm\n", +"n_ = 45000 // flux lines entering out from given volume in Vm\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 16 on page no. 10.42\n", +"printf('\n # PROBLEM 16 # \n')\n", +"fi = n_ - n\n", +"q = e0 * fi\n", +"printf('Standard formula used \n fi= q/e_. \n')\n", +"printf('The total charge enclosed by closed surface is %e C.',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.17: Calculation_of_Electric_flux.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"q = 13.5e-6 // charge enclosed at the centre of cube in C\n", +"l = 6 // length of the side of cube in cm\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 17 on page no. 10.43\n", +"printf('\n # PROBLEM 17 # \n')\n", +"fi = q / e0\n", +"fi_ = fi / 6\n", +"q = e0 * fi\n", +"printf('Standard formula used \n fi=q/e_.\n')\n", +"printf('Electric flux through the whole volume of the cube is %e Nm^2/C.\n Electric flux through one face of the cube is %e Nm^2/C.',fi,fi_)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.18: Calculation_of_Electric_flux_through_each_surface_of_the_cube.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"q = 11 // charge enclosed at the centre of cube in C\n", +"l = 5 // length of the side of cube in cm\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 18 on page no. 10.43\n", +"printf('\n # PROBLEM 18 # \n')\n", +"fi_ = (q / e0) / 6\n", +"printf('\nStandard formula used \n fi=q/e_\n')\n", +"printf(' Electric flux through each surface of the cube = %e Nm^2/C.',fi_)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.19: Calculation_of_Electric_field_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"q = 1e-8 // charge uniformly spread over metallic sphere in C\n", +"r = .1 //radius of sphere in m\n", +"d = 7 // distance of a point from centre of the sphere in cm\n", +"d_ = .5 // distance of another point from centre of the sphere in m\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 19 on page no. 10.43\n", +"printf('\n # PROBLEM 19 # \n')\n", +"E1 = (1 / (4 * %pi * e0) * (q / r^2))\n", +"E2 = 0 //because sphere is metallic\n", +"E3 = (1 / (4 * %pi * e0) * (q / d_^2))\n", +"printf('Standard formula used \n E = (1 / (4 * pi * e0) * (q / r^2)). \n')\n", +"printf(' Electric field intensity-\n (1) On the surface of the sphere = %e N/C,\n (2) At first point = %d N/C,\n (3) At second point = %e N/C',E1,E2,E3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.20: Calculation_of_Electric_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"q = 1.6e-19 // charge on a proton in C\n", +"d = 1e-10 // distance of a point from proton in m\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 20 on page no. 10.44\n", +"printf('\n # PROBLEM 20 # \n')\n", +"E = (1 / (4 * %pi * e0)) * (q / d^2)\n", +"printf('Standard formula used \n E = (1 / (4 * pi * e0)) * (q / d^2).\n')\n", +"printf(' Electric field = %e V/m.',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.21: Calculation_of_Energy_gained_by_alpha_particle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"v = 1000 // potential through which alpha particle accelerated in V\n", +"q = 3.2e-19 // charge on an alpha particle in C\n", +"e0 = 8.85e-12 // electric permittivity of space\n", +"// Sample Problem 21 on page no. 10.44\n", +"printf('\n # PROBLEM 21 # \n')\n", +"E = q * v\n", +"printf('Standard formula used \n E = q * v.\n')\n", +"printf(' Energy gained by alpha particle = %e J.',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.22: Calculation_of_Potential_and_Potential_energy_and_Potential_difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"q = 1.6e-19 // charge on a proton in C\n", +"d = 1e-10 // distance of a point from proton in m\n", +"d_ = 2e-11 // distance of another point from proton in m\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 22 on page no. 10.44\n", +"printf('\n # PROBLEM 22 # \n')\n", +"v = (1 / (4 * %pi * e0)) * (q / d)//calculation for potential at first point\n", +"E = -q * v//calculation for energy at first point in J\n", +"delta_v = (1 / (4 * %pi * e0)) * q * ((1 / d_) - (1 / d))//calculation for potential difference between points\n", +"printf('Standard formula used \n V=(1/(4*pi*e_))*q/r,\n E=-(1/(4*pi*e_))*q^2/r.\n')\n", +"printf(' Potential energy at first point = %f eV.\n Potential difference between points = %f V.',E/q,delta_v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.23: Calculation_of_Radius_of_equipotential_surface.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"q = 1.5e-6 // charge in C\n", +"v = 30 // potential of a surface in V\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 23 on page no. 10.45\n", +"printf('\n # PROBLEM 23 # \n')\n", +"r = (1 / (4 * %pi * e0)) * (q / v)\n", +"printf('Standard formula used \n v = (1/(4*pi*e_)*(q/r)).\n')\n", +"printf(' Radius of equipotential surface = %d m.',ceil(r))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.24: Calculation_of_The_value_of_poynting_vector_at_the_surface_of_the_sun.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"p = 3.8e26 // power radiated by sun in W\n", +"r = 7e8 // radius of sun in m\n", +"e0 = 8.85e-12 // permittivity of space\n", +"// Sample Problem 24 on page no. 10.45\n", +"printf('\n # PROBLEM 24 # \n')\n", +"s = p / (4 * %pi * r^2)\n", +"printf('Standard formula used \n s = p / (4 * pi * r^2).\n')\n", +"printf(' The value of poynting vector at the surface of the sun = %e W/m^2.',s)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.28: EX10_28.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"s = 2 // energy received by the earth in cal/cm^2.min\n", +"e0 = 8.85e-12 // electric permittivity of space\n", +"mu0 = 1.2567e-6 // magnetic permittivity of space\n", +"c = 3e8 // speed of light in meter/sec\n", +"// Sample Problem 28 on page no. 10.47\n", +"printf('\n # PROBLEM 28 # \n')\n", +"r = sqrt(mu0 / e0)\n", +"P = s*4.2/(60*1e-4)\n", +"E = sqrt(P*r)\n", +"H = E/r\n", +"printf('Standard formula used \n P = E*H.\n')\n", +"printf(' Magnitude of electric field vector = %f v/m.\n Magnitude of magnetic field vector = %f A/m.',E * sqrt(2),H*sqrt(2))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.29: Calculation_of_Magnitude_of_electric_field_vector.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"H = 1 // magnitude of magnetic field vector A/m\n", +"e0 = 8.85e-12 // electric permittivity of space\n", +"mu0 = 1.2567e-6 // magnetic permittivity of space\n", +"c = 3e8 // speed of light in meter/sec\n", +"// Sample Problem 29 on page no. 10.48\n", +"printf('\n # PROBLEM 29 # \n')\n", +"r = sqrt(mu0 / e0) // ratio of E,H\n", +"E = H * r\n", +"printf('Standard formula used \n H_/E_=sqrt(e_/mu_).\n')\n", +"printf(' Magnitude of electric field vector = %f v/m.',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.31: Calculation_of_Average_value_of_the_intensity_of_electric_field_of_radiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"p = 1000 // power of lamp in W\n", +"d = 2 // distance of a point from lamp in meter\n", +"e0 = 8.85e-12 // electric permittivity of space\n", +"mu0 = 1.2567e-6 // magnetic permittivity of space\n", +"c = 3e8 // speed of light in meter/sec\n", +"// Sample Problem 31 on page no. 10.48\n", +"printf('\n # PROBLEM 31 # \n')\n", +"s = p / (4 * %pi * d^2) //calculation for \n", +"r = sqrt(mu0 / e0) // ratio of E,H\n", +"E = sqrt(s * r)//calculation for average value of intensity of electric field of radiation\n", +"printf('Standard formula used \n E_/H_=sqrt(mu_/e_),\nP=E*H.\n')\n", +"printf(' Average value of the intensity of electric field of radiation = %f v/m.',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.32: Calculation_of_Refractive_index_of_distilled_water_and_Speed_of_light_in_water.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"k = 81 // relative permittivity of water \n", +"c = 3e8 // speed of light in meter/sec\n", +"// Sample Problem 32 on page no. 10.49\n", +"printf('\n # PROBLEM 32 # \n')\n", +"printf(' Standard formula used \n')\n", +"printf(' mu_ = ( mu*epsilon /(mu_0/*psilon_0))^1/2 \n \n' )\n", +"mu = sqrt(k)\n", +"v = c / mu\n", +"printf(' Refractive index of distilled water is %d .\n Speed of light in water is %e m/sec.',mu,v)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |