summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb')
-rw-r--r--Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb375
1 files changed, 375 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb
new file mode 100644
index 0000000..e2df71d
--- /dev/null
+++ b/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb
@@ -0,0 +1,375 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Semiconducting materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: Intrinsic_carrier_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.10.\n",
+"//Page No 272.\n",
+"clc;clear;\n",
+"d = 10^(-6);//Electrical conductivity -[ohm^-1 m^-1].\n",
+"e = 1.6*10^(-19);//Electron charge.\n",
+"ue = 0.85;//Electron mobility -[m^2 V^-1 s^-1].\n",
+"uh = 0.04;//hole mobility -[m^2 V^-1 s^-1].\n",
+"Ni = (d/(e*(ue+uh)));//intrinsic carrier concentration\n",
+"printf('\nThe intrinsic carrier concentration of GaAs is %3.3e m^-3',Ni);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11: Concentrations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"\n",
+"//Example No.9.11.\n",
+"//Page No 272.\n",
+"clc;clear;\n",
+"p = 0.1;//Resistivity of P-type and N-type -[ohm m].\n",
+"e = 1.6*10^(-19);//Electron charge.\n",
+"Uh = 0.48;//Hole mobility -[m^2 V^-1 s^-1].\n",
+"Ue = 1.35;//Electron mobility -[m^2 V^-1 s^-1].\n",
+"ni = 1.5*10^(16);\n",
+"d = (1/p);//Electrical conductivity\n",
+"disp('For P-type material')\n",
+"printf('\n1)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n",
+"Na = (d/(e*Uh));//Acceptor concentration.\n",
+"printf('\n2)The acceptor concentration is %3.3e m^-3',Na);\n",
+"n1 = (((ni)^(2))/(Na));//Minority carriers concentration.\n",
+"printf('\n3)The minority carriers concentration is %3.3e m^-3',n1);\n",
+"disp('For N-type semiconductor')\n",
+"d = (1/p);//Electrical conductivity.\n",
+"printf('\n2)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n",
+"Nd = (d/(e*Ue));//Donor concentration.\n",
+"printf('\n2)The donor concentration is %3.3e m^-3',Nd);\n",
+"n2 = (((ni)^(2))/(Nd));//Minority carriers concentration.\n",
+"printf('\n3)The minority carriers concentration is %3.3e m^-3',n2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Number_of_charge_carrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.1.\n",
+"//Page No.266.\n",
+"//To find number of charge carrier.\n",
+"clc;clear;\n",
+"d = 2.2;//Conductivity -[ohm^-1 m^-1].\n",
+"e = 1.6*10^(-19);//Value of electron.\n",
+"u1 = 0.36;//Mobility of the electrons -[m^2 V^-1 s^-1].\n",
+"u2 = 0.14;//Mobility of the holes -[m^2 V^-1 s^-1].\n",
+"T = 300;//Temperature -[K].\n",
+"n = (d/(e*(u1+u2)));//Number of charge carriers\n",
+"printf('\nThe carrier concentration of an intrinsic semiconductor is %3.3e m^3',n);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Band_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.2.\n",
+"//Page No.266.\n",
+"//To find conductivity of semiconductor.\n",
+"clc;clear;\n",
+"d20 = 250;//Conductivity at 20 degree celcius -[ohm^-1 m^-1].\n",
+"d100 = 1100;//Conductivity at 100 degree celcius -[ohm^-1 m^-1].\n",
+"k = 1.38*10^(-23);//Boltzman's constant.\n",
+"Eg = (2*k*((1/373)-(1/293))^(-1)*log((d20/d100)*(373/293)^(3/2)));//Band gap in joules.\n",
+"printf('\nBand gap of semiconductor in joules is %3.3e J',Eg);\n",
+"Eg = Eg/(1.6*10^(-19));//band gap in eV.\n",
+"printf('\nBand gap of semiconductor in eV is %.4f eV',Eg);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.3.\n",
+"//Page No.267.\n",
+"clc;clear;\n",
+"B = 0.5;//Magnetic field -[Wb/m^2].\n",
+"I = 10^(-2);//Current -[A].\n",
+"l = 100;//Length -[mm].\n",
+"d = 1;//Thickness -[mm].\n",
+"Rh = 3.66*10^(-4);//Hall coefficient -[m^3/C].\n",
+"w = 10*10^(-3);//Breadth -[mm].\n",
+"Vh = ((B*I*Rh)/w);//Hall voltage.\n",
+"printf('\nThe Hall voltage is %3.3e V',Vh);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Concentration_of_holes_and_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.4.\n",
+"//Page No.268.\n",
+"clc;clear;\n",
+"d = 3*10^(4);//Conductivity -[S/m].\n",
+"e = 1.6*10^(-19);//Value of electron.\n",
+"ue = 0.13;\n",
+"uh = 0.05;\n",
+"ni = 1.5*10^(16);\n",
+"disp('For N-type semiconductor')\n",
+"Nd = (d/(e*ue));\n",
+"printf('\ni)The concentration of electron is %3.3e m^-3',Nd);\n",
+"p = ((ni)^(2)/(Nd));\n",
+"printf('\nii)The concentration of holes is %3.3e m^-3',p);\n",
+"disp('For P-type semiconductor')\n",
+"Na = (d/(e*uh));\n",
+"printf('\ni)The concentration of holes is %3.3e m^-3',Na);\n",
+"n = ((ni)^(2)/(Na));\n",
+"printf('\nii)The concentration of electron is %3.3e m^-3',n);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: carrier_concentration_and_type_of_carrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.5.\n",
+"//Page No.269.\n",
+"//To calculate carrier concentration.\n",
+"clc;clear;\n",
+"Rh = 3.68*10^(-5);//Hall coefficient -[m^3/C].\n",
+"e = 1.6*10^(-19);//Electron charge -[C].\n",
+"disp('1)Since the hall voltage is negative,charge carriers of the semiconductors are electrons')\n",
+"n = ((3*%pi)/(8*Rh*e));//Carrier concentration.\n",
+"printf('\n2)The carrier concentration is %3.3e m^-3',n);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Intrinsic_carrier_densities.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.6.\n",
+"//Page No.269.\n",
+"clc;clear;\n",
+"Eg1 = 0.36;//Energy gap of the first material -[eV].\n",
+"Eg2 = 0.72//Energy gap of the second material -[eV].\n",
+"me = 9.1*10^(-31);// -[kg].\n",
+"A = 0.052;//'A' is (2*k*T).\n",
+"T = 300;//Temperature -[K].\n",
+"a = -0.36;\n",
+"b = 0.72;\n",
+"N = (exp(a/A)*exp(b/A));//Ratio of intrinsic carrier densities of material A & B.\n",
+"printf('\nThe ratio of intrinsic carrier densities of the materials A & B is %3.3e',N);\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: Mobility_of_electro.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.7.\n",
+"//Page No.270.\n",
+"//To find mobility of the electron.\n",
+"clc;clear;\n",
+"d = 112;//Conductivity -[ohm^-1 m^-1].\n",
+"Nd = 2*10^(22);//Concentration of electrons -[m^-3].\n",
+"e = 1.6*10^(-19);//Electron charge.\n",
+"u = (d/(Nd*e));//Mobility of electrons.\n",
+"printf('\nMobility of the electron is %.3f m^2 V^-1 s^-1',u);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.8.\n",
+"//Page No.270.\n",
+"clc;clear;\n",
+"Bz = 10*10^(-4);//Magnetic field -[Wb/m^2].\n",
+"I = 1;//Current -[A].\n",
+"W = 500*10^(-6);//Thickness of the sample -[m].\n",
+"n = 10^(16);//Donor concentration.\n",
+"e = 1.6*10^(-19);//Electron charge.\n",
+"VH = ((Bz*I*3*%pi)/(8*n*e*W));//Hall voltage in the sample.\n",
+"printf('\nThe Hall voltage in the sample is %3.3e V',VH);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9: Ratio_between_the_conductivity_of_the_material.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.9.9.\n",
+"//Page No 271.\n",
+"clc;clear;\n",
+"Eg = 1.2*1.6*10^(-19);//Energy gap.\n",
+"T1 = 300;//Temperature T1 -[K].\n",
+"T2 = 600;//Temperature T2 -[K].\n",
+"k = 1.38*10^(-23);//Boltzman's constant.\n",
+"N = ((T2/T1)^(3/2))*exp((Eg/(2*k))*((1/T1)-(1/T2)))*10^(-3);//Ratio between the conductivity of the material.\n",
+"printf('\nRatio between the conductivity of the material at 600 K and 300 K is %.2f',N);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}