diff options
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb')
-rw-r--r-- | Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb new file mode 100644 index 0000000..e2df71d --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb @@ -0,0 +1,375 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Semiconducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10: Intrinsic_carrier_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.10.\n", +"//Page No 272.\n", +"clc;clear;\n", +"d = 10^(-6);//Electrical conductivity -[ohm^-1 m^-1].\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"ue = 0.85;//Electron mobility -[m^2 V^-1 s^-1].\n", +"uh = 0.04;//hole mobility -[m^2 V^-1 s^-1].\n", +"Ni = (d/(e*(ue+uh)));//intrinsic carrier concentration\n", +"printf('\nThe intrinsic carrier concentration of GaAs is %3.3e m^-3',Ni);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11: Concentrations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"\n", +"//Example No.9.11.\n", +"//Page No 272.\n", +"clc;clear;\n", +"p = 0.1;//Resistivity of P-type and N-type -[ohm m].\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"Uh = 0.48;//Hole mobility -[m^2 V^-1 s^-1].\n", +"Ue = 1.35;//Electron mobility -[m^2 V^-1 s^-1].\n", +"ni = 1.5*10^(16);\n", +"d = (1/p);//Electrical conductivity\n", +"disp('For P-type material')\n", +"printf('\n1)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n", +"Na = (d/(e*Uh));//Acceptor concentration.\n", +"printf('\n2)The acceptor concentration is %3.3e m^-3',Na);\n", +"n1 = (((ni)^(2))/(Na));//Minority carriers concentration.\n", +"printf('\n3)The minority carriers concentration is %3.3e m^-3',n1);\n", +"disp('For N-type semiconductor')\n", +"d = (1/p);//Electrical conductivity.\n", +"printf('\n2)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n", +"Nd = (d/(e*Ue));//Donor concentration.\n", +"printf('\n2)The donor concentration is %3.3e m^-3',Nd);\n", +"n2 = (((ni)^(2))/(Nd));//Minority carriers concentration.\n", +"printf('\n3)The minority carriers concentration is %3.3e m^-3',n2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Number_of_charge_carrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.1.\n", +"//Page No.266.\n", +"//To find number of charge carrier.\n", +"clc;clear;\n", +"d = 2.2;//Conductivity -[ohm^-1 m^-1].\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"u1 = 0.36;//Mobility of the electrons -[m^2 V^-1 s^-1].\n", +"u2 = 0.14;//Mobility of the holes -[m^2 V^-1 s^-1].\n", +"T = 300;//Temperature -[K].\n", +"n = (d/(e*(u1+u2)));//Number of charge carriers\n", +"printf('\nThe carrier concentration of an intrinsic semiconductor is %3.3e m^3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.2.\n", +"//Page No.266.\n", +"//To find conductivity of semiconductor.\n", +"clc;clear;\n", +"d20 = 250;//Conductivity at 20 degree celcius -[ohm^-1 m^-1].\n", +"d100 = 1100;//Conductivity at 100 degree celcius -[ohm^-1 m^-1].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"Eg = (2*k*((1/373)-(1/293))^(-1)*log((d20/d100)*(373/293)^(3/2)));//Band gap in joules.\n", +"printf('\nBand gap of semiconductor in joules is %3.3e J',Eg);\n", +"Eg = Eg/(1.6*10^(-19));//band gap in eV.\n", +"printf('\nBand gap of semiconductor in eV is %.4f eV',Eg);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.3.\n", +"//Page No.267.\n", +"clc;clear;\n", +"B = 0.5;//Magnetic field -[Wb/m^2].\n", +"I = 10^(-2);//Current -[A].\n", +"l = 100;//Length -[mm].\n", +"d = 1;//Thickness -[mm].\n", +"Rh = 3.66*10^(-4);//Hall coefficient -[m^3/C].\n", +"w = 10*10^(-3);//Breadth -[mm].\n", +"Vh = ((B*I*Rh)/w);//Hall voltage.\n", +"printf('\nThe Hall voltage is %3.3e V',Vh);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Concentration_of_holes_and_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.4.\n", +"//Page No.268.\n", +"clc;clear;\n", +"d = 3*10^(4);//Conductivity -[S/m].\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"ue = 0.13;\n", +"uh = 0.05;\n", +"ni = 1.5*10^(16);\n", +"disp('For N-type semiconductor')\n", +"Nd = (d/(e*ue));\n", +"printf('\ni)The concentration of electron is %3.3e m^-3',Nd);\n", +"p = ((ni)^(2)/(Nd));\n", +"printf('\nii)The concentration of holes is %3.3e m^-3',p);\n", +"disp('For P-type semiconductor')\n", +"Na = (d/(e*uh));\n", +"printf('\ni)The concentration of holes is %3.3e m^-3',Na);\n", +"n = ((ni)^(2)/(Na));\n", +"printf('\nii)The concentration of electron is %3.3e m^-3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: carrier_concentration_and_type_of_carrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.5.\n", +"//Page No.269.\n", +"//To calculate carrier concentration.\n", +"clc;clear;\n", +"Rh = 3.68*10^(-5);//Hall coefficient -[m^3/C].\n", +"e = 1.6*10^(-19);//Electron charge -[C].\n", +"disp('1)Since the hall voltage is negative,charge carriers of the semiconductors are electrons')\n", +"n = ((3*%pi)/(8*Rh*e));//Carrier concentration.\n", +"printf('\n2)The carrier concentration is %3.3e m^-3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Intrinsic_carrier_densities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.6.\n", +"//Page No.269.\n", +"clc;clear;\n", +"Eg1 = 0.36;//Energy gap of the first material -[eV].\n", +"Eg2 = 0.72//Energy gap of the second material -[eV].\n", +"me = 9.1*10^(-31);// -[kg].\n", +"A = 0.052;//'A' is (2*k*T).\n", +"T = 300;//Temperature -[K].\n", +"a = -0.36;\n", +"b = 0.72;\n", +"N = (exp(a/A)*exp(b/A));//Ratio of intrinsic carrier densities of material A & B.\n", +"printf('\nThe ratio of intrinsic carrier densities of the materials A & B is %3.3e',N);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: Mobility_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.7.\n", +"//Page No.270.\n", +"//To find mobility of the electron.\n", +"clc;clear;\n", +"d = 112;//Conductivity -[ohm^-1 m^-1].\n", +"Nd = 2*10^(22);//Concentration of electrons -[m^-3].\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"u = (d/(Nd*e));//Mobility of electrons.\n", +"printf('\nMobility of the electron is %.3f m^2 V^-1 s^-1',u);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.8.\n", +"//Page No.270.\n", +"clc;clear;\n", +"Bz = 10*10^(-4);//Magnetic field -[Wb/m^2].\n", +"I = 1;//Current -[A].\n", +"W = 500*10^(-6);//Thickness of the sample -[m].\n", +"n = 10^(16);//Donor concentration.\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"VH = ((Bz*I*3*%pi)/(8*n*e*W));//Hall voltage in the sample.\n", +"printf('\nThe Hall voltage in the sample is %3.3e V',VH);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: Ratio_between_the_conductivity_of_the_material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.9.\n", +"//Page No 271.\n", +"clc;clear;\n", +"Eg = 1.2*1.6*10^(-19);//Energy gap.\n", +"T1 = 300;//Temperature T1 -[K].\n", +"T2 = 600;//Temperature T2 -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"N = ((T2/T1)^(3/2))*exp((Eg/(2*k))*((1/T1)-(1/T2)))*10^(-3);//Ratio between the conductivity of the material.\n", +"printf('\nRatio between the conductivity of the material at 600 K and 300 K is %.2f',N);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |