diff options
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/8-AMPLITUDE_MODULATION.ipynb')
-rw-r--r-- | Electronic_Communication_by_D_Roddy/8-AMPLITUDE_MODULATION.ipynb | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/8-AMPLITUDE_MODULATION.ipynb b/Electronic_Communication_by_D_Roddy/8-AMPLITUDE_MODULATION.ipynb new file mode 100644 index 0000000..e3df6ee --- /dev/null +++ b/Electronic_Communication_by_D_Roddy/8-AMPLITUDE_MODULATION.ipynb @@ -0,0 +1,148 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: AMPLITUDE MODULATION" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11_1: exampple_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 274\n", +"//prob no. 8.11.1\n", +"//RC load ckt for diode detector with c=1000pF in paralel with R=10Kohm\n", +"fm=10*10^3;//modulation freq\n", +"c=1000*10^-12;R=10*10^3;\n", +"Yp=(1/R)+((%i)*2*(%pi)*fm*c);//admittance of RC load\n", +"disp(Yp);\n", +"Zp=1/sqrt((real(Yp)^2)+(imag(Yp)^2));\n", +"disp(Zp);\n", +"//Determination of max modulation index\n", +"m=Zp/R;\n", +"disp(m,'The max modulation index is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3_1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 257\n", +"//prob no. 8.3.1\n", +"//A modulating signal with zero dc component & vpp=11,vcp=10 carrier peak voltage\n", +"vpp=11;//peak to peak voltage of modulating signal\n", +"vcp=10;//carrier peak voltage\n", +"//Determination of modulation index\n", +"E_max=vcp+(vpp/2);\n", +"E_min=vcp-(vpp/2);\n", +"m=(E_max-E_min)/(E_max+E_min);\n", +"disp(m,'The modulation index is');\n", +"//determination of kratio of side lengths\n", +"L1_L2=E_max/E_min;\n", +"disp(L1_L2,'The ratio of side lengths L1/L2 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5_1: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 260\n", +"//prob no. 8.5.1\n", +"//A carrier with fc=10MHz & vp=10V modulated with fm=5kHz & Vm=6V\n", +"fc=10*10^6;//Carrier freq\n", +"fm=5*10^3;//Modullating freq\n", +"vp=10;vm=6;\n", +"//Determination of modulation index\n", +"m=vm/vp;\n", +"disp(m,'The modulation index is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7_1: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 263\n", +"//prob no. 8.7.1\n", +"//AM radio Tx=10A when unmodulated & 12A when modulated\n", +"I=12;Ic=10;\n", +"//Determination of modulation index\n", +"m=sqrt(2*(((I/Ic)^2)-1));\n", +"disp(m,'The modulation index is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |