summaryrefslogtreecommitdiff
path: root/Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb')
-rw-r--r--Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb253
1 files changed, 253 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb b/Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb
new file mode 100644
index 0000000..9495714
--- /dev/null
+++ b/Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb
@@ -0,0 +1,253 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Oscillators"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3_1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 199\n",
+"// prob no 6.3.1\n",
+"// RC phase shift scillator\n",
+"// In the given problem small-signal o/p resistance Rc=40kohm\n",
+"// collector bias resistor, rc=10kohm,f=400 Hz;\n",
+"// all resistances are in Kohm and freq in Hz\n",
+"f=400;rc= 10; Rc= 40;\n",
+"// Minimum value of beta is given by Bomin= 23+(4*Ro/R)+(29*R/Ro)\n",
+"// For minimum beta Ro/R=2.7, we represent Ro/R=b\n",
+"b=2.7;\n",
+"Bomin=23+(4*b)+(29*1/b);\n",
+"disp(Bomin,'1.The minimum value of beta is');\n",
+"//Determination of R and C components\n",
+"//R0 is given by (rc*Rc)/(rc+Rc)\n",
+"R0=(rc*Rc)/(rc+Rc);\n",
+"R=2.7* R0;\n",
+"disp('Kohm',R,+'2.The value of resistor R=');\n",
+"c=1/(2*%pi*f*R*sqrt(6+(4*b)))*10^9;\n",
+"disp('pF',c,+'3.The value of capacitor is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3_2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"// page no 200\n",
+"// prob no 6.3.2\n",
+"// RC phase shift oscillator\n",
+"// all resistors are in Kohm\n",
+"f=800;R0=18;\n",
+"// R>>Ro should be chosen to minimize the effect of Ro on frequency. A number of values for R can be tried, and it will be found that R=100Kohm is reasonable.\n",
+"R=100;\n",
+"c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;// C in pF\n",
+"disp('pF',c,+'The value of capacitor is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3_3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"// page no 201\n",
+"// prob no 6_3_3\n",
+"// RC pase shift oscillator\n",
+"// All resistors are in Kohm\n",
+"f=1000; Ro=5;\n",
+"//Choose R>> R0 to minimize the effects of R0 on frequency. Select R=100kohm\n",
+"R=100;\n",
+"c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;\n",
+"disp('pF',c,+'The value of capacitor is ');\n",
+"// The required open -circuit voltage gain is \n",
+"Ao= 29+23*(Ro/R)+4*(Ro/R)^2;\n",
+"disp(Ao,'1.The required open -circuit voltage gain is');\n",
+"gm=Ao/Ro;\n",
+"disp('mS',gm,+'2.The value of gm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4_1: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"// page no 205\n",
+"// prob no 6_4_1\n",
+"// colpitt's oscillator\n",
+"L=400*10^-6;// in H\n",
+"c1= 100;// in pF\n",
+"c2= 300;// in pF\n",
+"Q=200;\n",
+"Ro= 5*10^3;\n",
+"Bo=100;//beta value\n",
+"// The tuning capacitance is\n",
+"Cs=(c1*c2/(c1+c2));\n",
+"disp('pF',Cs,+'1.The value of capacitor is ');\n",
+"// the frequency of oscillation is obtained as\n",
+"f=1/(2*%pi*sqrt(L*Cs*10^-12));\n",
+"disp('Hz',f,'2.The frequency of oscillation is');\n",
+"// The dynamic impedence of the tuned circuit \n",
+"wo= 2*%pi *f;\n",
+"Rd=Q/(wo*Cs*10^-12);\n",
+"disp('ohm',Rd,+'3.The dynamic impedence of the tuned circuit');\n",
+"// The coil series resistance is \n",
+"r=wo*L/Q;\n",
+"disp('ohm',r,+'4.The coil series resistance is ');\n",
+"//The capacitor raio c= c1/c2=1/3, and therefore 1-c2/B0*c1 = 1 .\n",
+"// The starting value of gm is therefore given by\n",
+"c= c1/c2;\n",
+"gm=(1/Ro)*c +(c+3+2)*(1/Rd);\n",
+"disp('sec',gm,+'5.The value of gm is');\n",
+"// Assuming the input resistance is that of the transistor alone,\n",
+"R1=Bo/gm;\n",
+"disp('ohm',R1,+'6.The input resistance is');\n",
+"//The actual starting frequency is obtained from wo^2=(1/LCs)+(1/R1R2C1C2)\n",
+"wo2=1/((L*Cs*10^-12)+(1/R1*Ro*c1*c2*10^-12*10^-12));\n",
+"wo=sqrt(wo2);\n",
+"// Hence the frequency is \n",
+"f=wo/(2*%pi);\n",
+"disp('Hz',f,'7.The frequency of oscillation is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6_1: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"// page no 211\n",
+"// prob no 6.6.1\n",
+"//In given problem zero bias capacitance co is 20pF\n",
+"Co=20;// in pF\n",
+"Vd=-7;// reverse bias voltage in volt\n",
+"//constant pottential of junction is 0.5\n",
+"a=0.5;// for abrupt junction\n",
+"Cd=Co/(1-(Vd/0.5))^a;\n",
+"disp('pF',Cd,+'The value of capacitor is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6_2: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"// page no 212\n",
+"// prob no 6.6.2\n",
+"//Voltage controlled Clapp oscillator\n",
+"// Capacitor is in pF and inductor in uH\n",
+"C1=300; C2=300; Cc=20; L=100;\n",
+"// A) With zero applied bias,the total tuning capacitor is\n",
+"Vd1=0;a=0.5;Co=20;\n",
+"Cd1=Co/(1-(Vd1/0.5))^a;\n",
+"Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1));\n",
+"disp('pF',Cs1, +'1.The total tuning capacitor is');\n",
+"// The frequency of oscillation is\n",
+"f=1/(2*%pi*sqrt(L*10^-6*Cs1*10^-12));\n",
+"disp('Hz',f,'2.The frequency of oscillation is');\n",
+"// B) With a reverse bias of -7 v, the tuning capacitance becomes\n",
+"Vd2=-7;\n",
+"Cd2=Co/(1-(Vd2/0.5))^a;\n",
+"Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2));\n",
+"disp('pF',Cs2, +'3.The total tuning capacitor is');\n",
+"// The frequency of oscillation is\n",
+"f=1/(2*%pi*sqrt(L*10^-6*Cs2*10^-12));\n",
+"disp('Hz',f,'4.The frequency of oscillation is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}