diff options
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb')
-rw-r--r-- | Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb | 253 |
1 files changed, 253 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb b/Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb new file mode 100644 index 0000000..9495714 --- /dev/null +++ b/Electronic_Communication_by_D_Roddy/6-Oscillators.ipynb @@ -0,0 +1,253 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Oscillators" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3_1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 199\n", +"// prob no 6.3.1\n", +"// RC phase shift scillator\n", +"// In the given problem small-signal o/p resistance Rc=40kohm\n", +"// collector bias resistor, rc=10kohm,f=400 Hz;\n", +"// all resistances are in Kohm and freq in Hz\n", +"f=400;rc= 10; Rc= 40;\n", +"// Minimum value of beta is given by Bomin= 23+(4*Ro/R)+(29*R/Ro)\n", +"// For minimum beta Ro/R=2.7, we represent Ro/R=b\n", +"b=2.7;\n", +"Bomin=23+(4*b)+(29*1/b);\n", +"disp(Bomin,'1.The minimum value of beta is');\n", +"//Determination of R and C components\n", +"//R0 is given by (rc*Rc)/(rc+Rc)\n", +"R0=(rc*Rc)/(rc+Rc);\n", +"R=2.7* R0;\n", +"disp('Kohm',R,+'2.The value of resistor R=');\n", +"c=1/(2*%pi*f*R*sqrt(6+(4*b)))*10^9;\n", +"disp('pF',c,+'3.The value of capacitor is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3_2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 200\n", +"// prob no 6.3.2\n", +"// RC phase shift oscillator\n", +"// all resistors are in Kohm\n", +"f=800;R0=18;\n", +"// R>>Ro should be chosen to minimize the effect of Ro on frequency. A number of values for R can be tried, and it will be found that R=100Kohm is reasonable.\n", +"R=100;\n", +"c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;// C in pF\n", +"disp('pF',c,+'The value of capacitor is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3_3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 201\n", +"// prob no 6_3_3\n", +"// RC pase shift oscillator\n", +"// All resistors are in Kohm\n", +"f=1000; Ro=5;\n", +"//Choose R>> R0 to minimize the effects of R0 on frequency. Select R=100kohm\n", +"R=100;\n", +"c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;\n", +"disp('pF',c,+'The value of capacitor is ');\n", +"// The required open -circuit voltage gain is \n", +"Ao= 29+23*(Ro/R)+4*(Ro/R)^2;\n", +"disp(Ao,'1.The required open -circuit voltage gain is');\n", +"gm=Ao/Ro;\n", +"disp('mS',gm,+'2.The value of gm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4_1: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 205\n", +"// prob no 6_4_1\n", +"// colpitt's oscillator\n", +"L=400*10^-6;// in H\n", +"c1= 100;// in pF\n", +"c2= 300;// in pF\n", +"Q=200;\n", +"Ro= 5*10^3;\n", +"Bo=100;//beta value\n", +"// The tuning capacitance is\n", +"Cs=(c1*c2/(c1+c2));\n", +"disp('pF',Cs,+'1.The value of capacitor is ');\n", +"// the frequency of oscillation is obtained as\n", +"f=1/(2*%pi*sqrt(L*Cs*10^-12));\n", +"disp('Hz',f,'2.The frequency of oscillation is');\n", +"// The dynamic impedence of the tuned circuit \n", +"wo= 2*%pi *f;\n", +"Rd=Q/(wo*Cs*10^-12);\n", +"disp('ohm',Rd,+'3.The dynamic impedence of the tuned circuit');\n", +"// The coil series resistance is \n", +"r=wo*L/Q;\n", +"disp('ohm',r,+'4.The coil series resistance is ');\n", +"//The capacitor raio c= c1/c2=1/3, and therefore 1-c2/B0*c1 = 1 .\n", +"// The starting value of gm is therefore given by\n", +"c= c1/c2;\n", +"gm=(1/Ro)*c +(c+3+2)*(1/Rd);\n", +"disp('sec',gm,+'5.The value of gm is');\n", +"// Assuming the input resistance is that of the transistor alone,\n", +"R1=Bo/gm;\n", +"disp('ohm',R1,+'6.The input resistance is');\n", +"//The actual starting frequency is obtained from wo^2=(1/LCs)+(1/R1R2C1C2)\n", +"wo2=1/((L*Cs*10^-12)+(1/R1*Ro*c1*c2*10^-12*10^-12));\n", +"wo=sqrt(wo2);\n", +"// Hence the frequency is \n", +"f=wo/(2*%pi);\n", +"disp('Hz',f,'7.The frequency of oscillation is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6_1: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 211\n", +"// prob no 6.6.1\n", +"//In given problem zero bias capacitance co is 20pF\n", +"Co=20;// in pF\n", +"Vd=-7;// reverse bias voltage in volt\n", +"//constant pottential of junction is 0.5\n", +"a=0.5;// for abrupt junction\n", +"Cd=Co/(1-(Vd/0.5))^a;\n", +"disp('pF',Cd,+'The value of capacitor is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6_2: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 212\n", +"// prob no 6.6.2\n", +"//Voltage controlled Clapp oscillator\n", +"// Capacitor is in pF and inductor in uH\n", +"C1=300; C2=300; Cc=20; L=100;\n", +"// A) With zero applied bias,the total tuning capacitor is\n", +"Vd1=0;a=0.5;Co=20;\n", +"Cd1=Co/(1-(Vd1/0.5))^a;\n", +"Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1));\n", +"disp('pF',Cs1, +'1.The total tuning capacitor is');\n", +"// The frequency of oscillation is\n", +"f=1/(2*%pi*sqrt(L*10^-6*Cs1*10^-12));\n", +"disp('Hz',f,'2.The frequency of oscillation is');\n", +"// B) With a reverse bias of -7 v, the tuning capacitance becomes\n", +"Vd2=-7;\n", +"Cd2=Co/(1-(Vd2/0.5))^a;\n", +"Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2));\n", +"disp('pF',Cs2, +'3.The total tuning capacitor is');\n", +"// The frequency of oscillation is\n", +"f=1/(2*%pi*sqrt(L*10^-6*Cs2*10^-12));\n", +"disp('Hz',f,'4.The frequency of oscillation is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |