diff options
Diffstat (limited to 'Electonic_Devices_by_S_Sharma/4-Junctions.ipynb')
-rw-r--r-- | Electonic_Devices_by_S_Sharma/4-Junctions.ipynb | 931 |
1 files changed, 931 insertions, 0 deletions
diff --git a/Electonic_Devices_by_S_Sharma/4-Junctions.ipynb b/Electonic_Devices_by_S_Sharma/4-Junctions.ipynb new file mode 100644 index 0000000..3b4474b --- /dev/null +++ b/Electonic_Devices_by_S_Sharma/4-Junctions.ipynb @@ -0,0 +1,931 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Junctions" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Width_of_the_depletion_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.10\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"A = 1;// in mm^2\n", +"A = A * 10^-6;// in m^2\n", +"N_A = 3 * 10^20;// in atoms/m^3\n", +"q = 1.6 *10^-19;// in C\n", +"V_o = 0.2;// in V\n", +"epsilon_r=16;\n", +"epsilon_o= 8.854*10^-12;// in F/m\n", +"epsilon=epsilon_r*epsilon_o;\n", +"// Part (a)\n", +"V=-10;// in V\n", +"// V_o - V = 1/2*((q * N_A )/epsilon) * W^2\n", +"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n", +"W= W*10^6;// in µm\n", +"disp(W,'The width of the depletion layer for an applied reverse voltage of 10V in µm is ');\n", +"W= W*10^-6;// in m\n", +"C_T1 = (epsilon * A)/W;// in F\n", +"C_T1= C_T1*10^12;// in pF\n", +"// Part (b)\n", +"V=-0.1;// in V\n", +"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n", +"W= W*10^6;// in µm\n", +"disp(W,'The width of the depletion layer for an applied reverse voltage of 0.1V in µm is ');\n", +"W= W*10^-6;// in m\n", +"C_T2 = (epsilon * A)/W;// in F\n", +"C_T2= C_T2*10^12;// in pF\n", +"// Part (c)\n", +"V=0.1;// in V\n", +"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n", +"W= W*10^6;// in µm\n", +"disp(W,'The width of the depletion layer for an applied for a forward bias of 0.1V in µm is ');\n", +"// Part (d)\n", +"disp(C_T1,'The space charge capacitance for an applied reverse voltage of 10V in pF is');\n", +"disp(C_T2,'The space charge capacitance for an applied reverse voltage of 0.1V in pF is');\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Current_in_the_junction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.11\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 1.8 * 10^-9;// A\n", +"v = 0.6;// in V\n", +"Eta = 2;\n", +"V_T = 26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"// The current in the junction\n", +"I = I_o *(%e^(v/(Eta * V_T)));// in A\n", +"I= I*10^3;// in mA\n", +"disp(I,'The current in the junction in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12: Forward_biasing_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.12\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 2.4 * 10^-14;\n", +"I = 1.5;// in mA\n", +"I=I*10^-3;// in A\n", +"Eta = 1;\n", +"V_T = 26;// in mV\n", +"V_T= V_T*10^-3;// in V\n", +"// The forward biasing voltage across the junction\n", +"v =log((I + I_o)/I_o) * V_T;// in V\n", +"disp(v,'The forward biasing voltage across the junction in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: Theoretical_diode_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.13\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 10;// in nA\n", +"// I = I_o * ((e^(v/(Eta * V_T))) - 1) as diode is reverse biased by large voltage\n", +"// e^(v/(Eta * V_T)<< 1, so neglecting it\n", +"I = I_o * (-1);// in nA\n", +"disp(I,'The Diode current in nA is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: Diode_dynamic_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.14\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R = 4.5;// in ohm\n", +"I = 44.4;// in mA\n", +"I=I*10^-3;// in A\n", +"V = R * I;// in V\n", +"Eta = 1;\n", +"V_T = 26;//in mV\n", +"V_T=V_T*10^-3;// in V\n", +"// Reverse saturation current,\n", +"I_o = I/((%e^(V/(Eta * V_T))) -1);// in A\n", +"// Dynamic resistance at 0.1 V forward bias\n", +"V = 0.1;// in V\n", +"// The diode dynamic resistance,\n", +"r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));// in ohm\n", +"disp(r_f,'The diode dynamic resistance in Ω is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.15: DC_load_line_and_operating_point.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.15\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_D = 10;// in V\n", +"// V_S = i*R_L + V_D\n", +"V_S = V_D;// in V (i * R_L = 0)\n", +"disp(V_S,'when diode is OFF, the voltage in volts is : ');\n", +"R_L = 250;// in ohm\n", +"I = V_S/R_L;// in A\n", +"disp(I*10^3,'when diode is ON, the current in mA is');\n", +"V_D= 0:0.1:10;// in V\n", +"I= (V_S-V_D)/R_L*1000;// in mA\n", +"plot(V_D,I)\n", +"xlabel('V_D in volts');\n", +"ylabel('Current in mA')\n", +"title('DC load line');\n", +"disp('DC load line shown in figure')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.16: AC_resistance_of_a_Ge_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.16\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V = 0.25;// in V\n", +"I_o = 1.2;// in µA\n", +"I_o = I_o * 10^-6;// in A\n", +"V_T = 26;// in mV\n", +"V_T = V_T * 10^-3;// in V\n", +"Eta = 1;\n", +"// The ac resistance of the diode \n", +"r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T))));// in ohm\n", +"disp(r,'The ac resistance of the diode in ohm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.17: Junction_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.17\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"t = 4.4 * 10^22;// in total number of atoms/cm^3\n", +"n = 1 * 10^8;// number of impurity\n", +"N_A = t/n;// in atoms/cm^3\n", +"N_A = N_A * 10^6;// in atoms/m^3\n", +"N_D = N_A * 10^3;// in atoms/m^3\n", +"V_T = 26;// in mV\n", +"V_T = V_T * 10^-3;// in V\n", +"n_i = 2.5 * 10^19;// in /cm^3\n", +"// The junction potential\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'The junction potential in V is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.18: Dynamic_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.18\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Eta = 1;\n", +"I_o = 30;// in MuA\n", +"I_o = I_o * 10^-6;// in A\n", +"v = 0.2;// in V\n", +"K = 1.381 * 10^-23;// in J/degree K \n", +"T = 125;// in °C\n", +"T = T + 273;// in K\n", +"q = 1.6 * 10^-19;// in C\n", +"V_T = (K*T)/q;// in V\n", +"// The forward dynamic resistance,\n", +"r_f = (Eta * V_T)/(I_o * (%e^(v/(Eta * V_T))));// in ohm\n", +"disp(r_f,'The forward dynamic resistance in ohm is');\n", +"// The Reverse dynamic resistance\n", +"r_f1 = (Eta * V_T)/(I_o * (%e^(-(v)/(Eta * V_T))));// in ohm\n", +"r_f1= r_f1*10^-3;// in k ohm\n", +"disp(r_f1,'The Reverse dynamic resistance in kΩ is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.19: Width_of_the_depletion_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.19\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"N_A = 3 * 10^20;// in /m^3\n", +"A = 1;// in µm^2\n", +"A = A * 10^-6;// in m^2\n", +"V = -10;// in V\n", +"V_J = 0.25;// in V\n", +"V_B = V_J - V;// in V\n", +"epsilon_o = 8.854;// in pF/m\n", +"epsilon_o = epsilon_o * 10^-12;// in F/m\n", +"epsilon_r = 16;\n", +"epsilon = epsilon_o * epsilon_r;\n", +"// The width of depletion layer,\n", +"W = sqrt((V_B * 2 * epsilon)/(q * N_A));// in m \n", +"W=W*10^6;// in µm\n", +"disp(W,'The width of depletion layer in µm is');\n", +"W=W*10^-6;// in m\n", +"// The space charge capacitance,\n", +"C_T = (epsilon * A)/W;// in pF\n", +"C_T=C_T*10^12;// in pF\n", +"disp(C_T,'The space charge capacitance in pF is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.20: Barrier_capacitance_of_a_Ge_pn_junction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.20\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"W = 2 * 10^-4;// in cm\n", +"W = W * 10^-2;// in m\n", +"A = 1;// in mm^2\n", +"A = A * 10^-6;// in m^2\n", +"epsilon_r = 16;\n", +"epsilon_o = 8.854 * 10^-12;// in F/m\n", +"epsilon = epsilon_r * epsilon_o;\n", +"C_T = (epsilon * A)/W;// in F\n", +"C_T= C_T*10^12;// in pF\n", +"disp(C_T,'The barrier capacitance in pF is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.21: Diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.21\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C_T = 100;// in pF\n", +"C_T=C_T*10^-12;// in F\n", +"epsilon_r = 12;\n", +"epsilon_o = 8.854 * 10^-12;// in F/m\n", +"epsilon = epsilon_r * epsilon_o;\n", +"Rho_p = 5;// in ohm-cm\n", +"Rho_p = Rho_p * 10^-2;// in ohm-m\n", +"V_j = 0.5;// in V\n", +"V = -4.5;// in V\n", +"Mu_p = 500;// in cm^2\n", +"Mu_p = Mu_p * 10^-4;// in m^2\n", +"Sigma_p = 1/Rho_p;// in per ohm-m\n", +"qN_A = Sigma_p/ Mu_p;\n", +"V_B = V_j - V;\n", +"W = sqrt((V_B * 2 * epsilon)/qN_A);// in m\n", +"//C_T = (epsilon * A)/W;\n", +"A = (C_T * W)/ epsilon;// in m\n", +"D = sqrt(A * (4/%pi));// in m\n", +"D = D * 10^3;// in mm\n", +"disp(D,'The diameter in mm is');\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.22: Temperature_of_junction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.22\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"Mu_p = 500;// in cm^2/V-sec\n", +"Rho_p = 3.5;// in ohm-cm\n", +"Mu_n = 1500;// in cm^2/V-sec\n", +"Rho_n = 10;// in ohm-cm\n", +"N_A = 1/(Rho_p * Mu_p * q);// in /cm^3\n", +"N_D = 1/(Rho_n * Mu_n * q);// in /cm^3\n", +"V_J = 0.56;// in V\n", +"n_i = 1.5 * 10^10;// in /cm^3\n", +"V_T = V_J/log((N_A * N_D)/(n_i)^2);// in V\n", +"// V_T = T/11600\n", +"T = V_T * 11600;// in K\n", +"T = T - 273;// in °C\n", +"disp(T,'The Temperature of junction in °C is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.23: Voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.23\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_T = 26;// in mV\n", +"V_T = V_T * 10^-3;// in V\n", +"Eta = 1;\n", +"// I = -90% for Io, so\n", +"IbyIo= 0.1;\n", +"// I = I_o * ((e^(v/(Eta * V_T)))-1)\n", +"V = log(IbyIo) * V_T;// in V\n", +"disp(V,'The reverse bias voltage in volts is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.24: Reverse_saturation_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.24\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R = 5;// in ohm\n", +"I = 50;// in mA\n", +"I=I*10^-3;// in A\n", +"V = R * I;// in V\n", +"Eta = 1;\n", +"V_T = 26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"// The reverse saturation current \n", +"I_o = I/((%e^(V/(Eta * V_T))) - 1);// in A\n", +"I_o= I_o*10^6;// in µA\n", +"disp(I_o,'Reverse saturation current in µA is');\n", +"I_o= I_o*10^-6;// in A\n", +"v1 = 0.2;// in V\n", +"// The dynamic resistance of the diode,\n", +"r = (Eta * V_T)/(I_o * (%e^(v1/(Eta * V_T))));// in ohm\n", +"disp(r,'Dynamic resistance of the diode in Ω is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Tuning_range.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.2\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C1= 5*10^-12;// in F\n", +"C2= 5*10^-12;// in F\n", +"L= 10*10^-3;// in H\n", +"C_Tmin= C1*C2/(C1+C2);// in F\n", +"f_omax= 1/(2*%pi*sqrt(L*C_Tmin));// in Hz\n", +"C1= 50*10^-12;// in F\n", +"C2= 50*10^-12;// in F\n", +"C_Tmax= C1*C2/(C1+C2);// in F\n", +"f_omin= 1/(2*%pi*sqrt(L*C_Tmax));// in Hz\n", +"f_omax= f_omax*10^-6;// in MHz\n", +"f_omin= f_omin*10^-3;// in kHz\n", +"disp(f_omax,'The maximum value of resonant frequency in MHz is : ')\n", +"disp(f_omin,'The minimum value of resonant frequency in kHz is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Contact_difference_of_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"t = 4.4 * 10^22;// total number of Ge atoms/cm^3\n", +"n = 1 * 10^8;// number of impurity atoms\n", +"N_A = t/n;// in atoms/cm^3\n", +"N_A = N_A * 10^6;// in atoms/m^3\n", +"N_D = N_A * 10^3;// in atoms/m^3\n", +"n_i = 2.5 * 10^13;// in atoms/cm^3\n", +"n_i = n_i * 10^6;// in atoms/m^3\n", +"V_T = 26;//in mV\n", +"V_T= V_T*10^-3;// in V\n", +"// The contact potential for Ge semiconductor,\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'The contact potential for Ge semiconductor in V is');\n", +"// Part (b)\n", +"t = 5* 10^22;// total number of Si atoms/cm^3\n", +"N_A = t/n;// in atoms/cm^3\n", +"N_A = N_A * 10^6;// in atoms/m^3\n", +"N_D = N_A * 10^3;// in atoms/m^3\n", +"n_i = 1.5 * 10^10;// in atoms/cm^3\n", +"n_i = n_i * 10^6;// in atoms/m^3\n", +"V_T = 26;//in mV\n", +"V_T= V_T*10^-3;// in V\n", +"// The contact potential for Si P-N junction,\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'The contact potential for Si P-N junction in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Height_of_the_potential_energy_barrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_T = 26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"n_i = 2.5 * 10^13;\n", +"Sigma_p = 1;\n", +"Sigma_n = 1;\n", +"Mu_n = 3800;\n", +"q = 1.6 * 10^-19;// in C\n", +"Mu_p = 1800;\n", +"N_A = Sigma_p/(2* q * Mu_p);// in /cm^3\n", +"N_D = Sigma_n /(q * Mu_n);// in /cm^3\n", +"// The height of the energy barrier for Ge,\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'For Ge the height of the energy barrier in V is');\n", +"// For Si p-n juction\n", +"n_i = 1.5 * 10^10;\n", +"Mu_n = 1300;\n", +"Mu_p = 500;\n", +"N_A = Sigma_p/(2* q * Mu_p);// in /cm^3\n", +"N_D = Sigma_n /(q * Mu_n);// in /cm^3\n", +"// The height of the energy barrier for Si p-n junction,\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'For Si p-n junction the height of the energy barrier in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Forward_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.5\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Eta = 1;\n", +"V_T = 26;// in mV\n", +"V_T= V_T*10^-3;// in V\n", +"//From equation of the diode current, I = I_o * (%e^(V/(Eta*V_T)) - 1) and I = -(0.9) * I_o\n", +"V= log(1-0.9)*V_T;//voltage in V\n", +"disp(V,'The voltage in volts is : ')\n", +"// Part (ii)\n", +"V1=0.05;// in V\n", +"V2= -0.05;// in V\n", +"// The ratio of the current for a forward bias to reverse bias \n", +"ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)\n", +"disp(ratio,'The ratio of the current for a forward bias to reverse bias is : ')\n", +"// Part (iii)\n", +"Io= 10;// in µA\n", +"Io=Io*10^-3;// in mA\n", +"//For \n", +"V=0.1;// in V\n", +"// Diode current\n", +"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n", +"disp(I,'For V=0.1 V , the value of I in mA is : ')\n", +"//For \n", +"V=0.2;// in V\n", +"// Diode current\n", +"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n", +"disp(I,'For V=0.2 V , the value of I in mA is : ')\n", +"//For \n", +"V=0.3;// in V\n", +"// Diode current\n", +"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n", +"disp(I*10^-3,'For V=0.3 V , the value of I in A is : ')\n", +"disp('From three value of I, for small rise in forward voltage, the diode current increase rapidly')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Anticipated_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.6\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"// Part (i)\n", +"T1= 25;// in °C\n", +"T2= 80;// in °C\n", +"// Formula Io2= Io1*2^((T2-T1)/10)\n", +"AntiFactor= 2^((T2-T1)/10);\n", +"disp(round(AntiFactor),'Anticipated factor for Ge is : ')\n", +"// Part (ii)\n", +"T1= 25;// in °C\n", +"T2= 150;// in °C\n", +"AntiFactor= 2^((T2-T1)/10);\n", +"disp(round(AntiFactor),'Anticipated factor for Si is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Leakage_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.7\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I=5;// in µA\n", +"V=10;// in V\n", +"T1= 0.11;// in °C^-1\n", +"T2= 0.07;// in °C^-1\n", +"// Io+I_R=I (i)\n", +"// dI_by_dT= dIo_by_dT (ii)\n", +"// 1/Io*dIo_by_dT = T1 and 1/I*dI_by_dT = T2, So\n", +"Io= T2*I/T1;// in µA\n", +"I_R= I-Io;// in µA\n", +"R= V/I_R;// in MΩ\n", +"disp(R,'The leakage resistance in MΩ is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: Dynamic_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.8\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Eta = 1;\n", +"T = 125;// in °C\n", +"T = T + 273;// in K\n", +"V_T = 8.62 * 10^-5 * 398;// in V\n", +"I_o = 30;// in µA\n", +"I_o= I_o*10^-6;// in A\n", +"v = 0.2;// in V\n", +"// The dynamic resistance in the forward direction \n", +"r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T)));// in ohm\n", +"disp(r_f,'The dynamic resistance in the forward direction in ohm is ');\n", +"// The dynamic resistance in the reverse direction \n", +"r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T)));// in ohm\n", +"r_r= r_r*10^-3;// in k ohm\n", +"disp(r_r,'The dynamic resistance in the reverse direction in kohm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Barrier_capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.9\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"epsilon = 16/(36 * %pi * 10^11);// in F/cm\n", +"A = 1 * 10^-2;\n", +"W = 2 * 10^-4;\n", +"// The barrier capacitance \n", +"C_T = (epsilon * A)/W;// in F\n", +"C_T= C_T*10^12;// in pF\n", +"disp(C_T,'The barrier capacitance in pF is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |