summaryrefslogtreecommitdiff
path: root/Basic_Electrical_And_Electronics_Engineering_by_R_R_Singh/3-AC_Fundamentals.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Electrical_And_Electronics_Engineering_by_R_R_Singh/3-AC_Fundamentals.ipynb')
-rw-r--r--Basic_Electrical_And_Electronics_Engineering_by_R_R_Singh/3-AC_Fundamentals.ipynb378
1 files changed, 378 insertions, 0 deletions
diff --git a/Basic_Electrical_And_Electronics_Engineering_by_R_R_Singh/3-AC_Fundamentals.ipynb b/Basic_Electrical_And_Electronics_Engineering_by_R_R_Singh/3-AC_Fundamentals.ipynb
new file mode 100644
index 0000000..352d4ae
--- /dev/null
+++ b/Basic_Electrical_And_Electronics_Engineering_by_R_R_Singh/3-AC_Fundamentals.ipynb
@@ -0,0 +1,378 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: AC Fundamentals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Time_at_which_current_attain_a_particular_value.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 10,Chapter 3\n",
+"//(i)\n",
+"clc;\n",
+"Ieff=7.071/sqrt(2)\n",
+"Irms=Ieff\n",
+"Im=5*sqrt(2)\n",
+"//(ii)\n",
+"f=(157.08)/(2*%pi)\n",
+"T=(1/f)\n",
+"printf('\n T=%.2f s \n',T)\n",
+"//(iii)\n",
+"t=(asin((7.071/7.071))+0.785)/157.08\n",
+"printf('\n t=%.3f s \n',t)\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: Form_factor_Frequence_and_Crest_Factor.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15,Chapter 3\n",
+"clc;\n",
+"f=(314/(2*%pi))\n",
+"printf('\n f=%.0f Hz \n',f)\n",
+"disp('For a sinusoidal waveform')\n",
+"disp('Vavg=2Vm/pi')\n",
+"disp('Vrms=Vm/sqrt(2)')\n",
+"//(ii)\n",
+"disp('kf=Vrms/Vavg')\n",
+"kf=%pi/(2*sqrt(2))\n",
+"printf('\n kf=%.2f \n',kf)\n",
+"//(iii)\n",
+"disp('kp=Vm/Vrms')\n",
+"kp=sqrt(2)\n",
+"printf('\n kp=%.3f \n',kp)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: RMS_value_and_maximum_value.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16,Chapter 3\n",
+"kf=1.2 //Form factor\n",
+"kp=1.5 //Peak factor\n",
+"Vavg=10\n",
+"//(i)\n",
+"Vrms=kf*Vavg\n",
+"printf('\n Vrms=%.0f V \n',Vrms)\n",
+"//(ii)\n",
+"Vm=kp*Vrms\n",
+"printf('\n Vm=%.0f V \n',Vm)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: Average_value_and_RMS_value_of_voltage.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17,Chapter 3\n",
+"kf=1.15\n",
+"kp=1.5\n",
+"Vm=4500\n",
+"//(i)\n",
+"Vrms=Vm/kp\n",
+"printf('\n Vrms=%.0f V \n',Vrms)\n",
+"//(ii)\n",
+"Vavg=Vrms/kf\n",
+"printf('\n Vavg=%.1f V \n',Vavg)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Mean_value_of_current.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter 3,Ex3.1,Pg3.4\n",
+"clc;\n",
+"Im=15/(sin(2*%pi*3.375*0.001*40))\n",
+"printf('\n Im=%.0f A \n',Im)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Time_at_which_current_attain_a_particular_value.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter 3,Ex3.2,Pg3.4\n",
+"clc;\n",
+"//(a)\n",
+"//Given that f=50c/s and Im=100A\n",
+"i=100*sin(2*%pi*50*(1/600))\n",
+"printf('\n Instantaneous value of current i=%.0f A \n',i)\n",
+"//(b)\n",
+"t=(asin(60*%pi)/180)/(100*180)\n",
+"printf('\n t=%.4f sec \n',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Time_at_which_current_attain_a_particular_value.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f=50 //Frequence in hertz\n",
+"Irms=20 //Rms current in amperes\n",
+"Im=Irms*sqrt(2)\n",
+"disp('(i)')\n",
+"printf('\n Im=%02f A \n',Im)\n",
+"t=0.0025 //Time in seconds\n",
+"i=Im*sin(2*%pi*f*t)\n",
+"disp('(ii)')\n",
+"printf('\n i=%.0f \n',i)\n",
+"t=0.0125\n",
+"i=Im*sin(2*%pi*f*t)\n",
+"disp('(iii)')\n",
+"printf('\n i=%.0f \n',i)\n",
+"i1=14.14/Im\n",
+"disp(i1)\n",
+"i2=asin(i1)\n",
+"i2=i2*180/%pi\n",
+"disp(i2)\n",
+"i=i2/(2*180*f)\n",
+"printf('\n i=%.2f \n ms',i*10^3)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Time_at_which_current_attain_a_particular_value.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f=60\n",
+"Im=110\n",
+"disp('(i)')\n",
+"t1=90/Im\n",
+"t2=asin(t1)\n",
+"disp(t2)\n",
+"t2=t1*180/%pi\n",
+"disp(t2)\n",
+"t=t1/21600\n",
+"printf('\n t=%.2f ms \n',t*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Time_at_which_current_attain_a_particular_value.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 5,Chapter 3\n",
+"clc;\n",
+"f=50 //Frequency in hertz\n",
+"Im=9.2 //Current in amperes\n",
+"//(i)\n",
+"t=0.002\n",
+"i=Im*sin(2*%pi*f*t)\n",
+"printf('\n Instantaneous value of current=%.2f A \n',i)\n",
+"//(ii)\n",
+"t=0.0045\n",
+"t=(1/(4*f))+0.0045\n",
+"i=Im*sin(2*%pi*f*t)\n",
+"printf('\n Instantaneous Value=%.2f A \n',i)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Time_at_which_current_attain_a_particular_value.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example6, Chapter 3\n",
+"clc;\n",
+"f=50\n",
+"Irms=20\n",
+"//(i)\n",
+"Im=Irms*sqrt(2)\n",
+"i=10*sqrt(2)\n",
+"ans=asin(i/Im)\n",
+"ans=ans*180/%pi\n",
+"t= ans/(2*180*f)\n",
+"printf('\n t=%.0f ms \n',t*10^3)\n",
+"//(ii)\n",
+"t=(1/(4*f))+t\n",
+"printf('\n t=%.2f ms \n',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Time_at_which_current_attain_a_particular_value.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8,Chapter 3\n",
+"clc;\n",
+"f=50\n",
+"Irms=10 //Current in amperes\n",
+"//(i)\n",
+"Im=Irms*sqrt(2)\n",
+"disp('14.14sin(18000t)')\n",
+"//(ii)\n",
+"t=0.0025\n",
+"t=(1/(4*f)) + t\n",
+"printf('\n t=%.1f ms \n',t*10^3)\n",
+"i=14.14*sin(18000*7.5*10^-3)\n",
+"printf('\n i=%.0f A \n',i)\n",
+"//(ii)\n",
+"t=0.0075\n",
+"t=(1/(2*f))+t\n",
+"printf('\n t=%.1f ms \n',t*10^3)\n",
+"i=14.14*sin(18000*t*10^-3)\n",
+"printf('\n i=%.0f A \n',i)\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}