summaryrefslogtreecommitdiff
path: root/Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb')
-rw-r--r--Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb428
1 files changed, 428 insertions, 0 deletions
diff --git a/Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb b/Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb
new file mode 100644
index 0000000..f9c228a
--- /dev/null
+++ b/Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb
@@ -0,0 +1,428 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Small Signal Amplifiers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: SSA_Ex_2_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.10 page no 51\n",
+"//given\n",
+"Z1=1*10^3//asumming impedance value for required specification\n",
+"Av=-50//voltage gain\n",
+"Zf=-Av*Z1//feedback impedance\n",
+"mprintf('Z1=%d K ohm \n feedback impedance (Zf)= %d K ohm',Z1*1e-3,Zf*1e-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: SSA_Ex_2_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.11 pag no 51\n",
+"//given\n",
+"wL=10^6//bandwidth\n",
+"R1=1*10^3//taking resistance value for required specification\n",
+"Av=-50//voltage gain\n",
+"Rf=-Av*R1//feedback resistance\n",
+"C=(wL*Rf)^-1//capacitance\n",
+"mprintf('R1=%d K ohm \n feedback resistance= %d K ohm \n capacitance= %d pF',R1*1e-3,Rf*1e-3,C*1e12)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: SSA_Ex_2_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.12 page no 53\n",
+"//given\n",
+"Aa=10^4//open loop gain\n",
+"Rf=10^4//feedback resistance\n",
+"Ri=100//input resistance\n",
+"Av=-(Rf/Ri)/(1+(Ri+Rf)*(Aa*Ri))//actual amplifier gain\n",
+"disp(Av,'the actual amplifier gain is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: SSA_Ex_2_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Bipolar transistor amplifiers\n",
+"//example 2.13 page no 53\n",
+"//given\n",
+"G=90//low frequency gain in dB\n",
+"Ao=(G/20)//low frequency open loop gain\n",
+"wT=150*10^6//gain bandwidth product\n",
+"wo=wT/Ao//bandwidth\n",
+"disp('the transfer function is')\n",
+"disp('Av=3.16*e4/(1+jw/(2*pi*4.7*e3))')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: SSA_Ex_2_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.14 page no 57\n",
+"//given\n",
+"Z1=1*10^3//assuming impedance value for required specification\n",
+"Av=100//voltage gain\n",
+"Z2=(Av-1)*Z1\n",
+"mprintf('Z1=%d Kohm \n Z2=%d Kohm',Z1*1e-3,Z2*1e-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: SSA_Ex_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.1 page no 17\n",
+"//given\n",
+"B=100//current gain\n",
+"Ic=10^-3//collector bias current\n",
+"//kT/q=0.026 where as k=Boltzmanns constant T=temperature q=charge on an electron\n",
+"rpi=(0.026*B)/Ic//base emitter resistance\n",
+"mprintf('the base emitter resistance is %d ohm',rpi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: SSA_Ex_2_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.2 page no 22\n",
+"//given\n",
+"Ic=10^-3//collector bias current\n",
+"B=100//current gain\n",
+"RL=4*10^3//load resistance\n",
+"Rs=50//source resistance\n",
+"gm=40*Ic//transconductance\n",
+"rpi=B/gm//base emitter resistance\n",
+"Av=(B*RL)/(rpi+Rs*(1+B))//voltage gain\n",
+"disp(Av,'the voltage gain is ')\n",
+"Ai=B/(1+B)//current gain\n",
+"disp(Ai,'the current gain is ')\n",
+"Zi=1/gm//input impedance\n",
+"mprintf('the input impedance is %d ohm',Zi)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: SSA_Ex_2_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.3 page no 25\n",
+"//given\n",
+"Ic=40*10^-3//collector bias current\n",
+"B=40//current gain\n",
+"RL=50//load resistance\n",
+"Rs=50//source resistance\n",
+"rpi=(0.026*B)/Ic//base emitter resistance\n",
+"Av=(B*RL)/(rpi+Rs+(1+B)*RL)//voltage gain\n",
+"Ai=(1+B)//current gain\n",
+"Ap=Ai*Av//power gain\n",
+"mprintf('the power gain is %f \n',Ap)\n",
+"Zo=(rpi+Rs)/(1+B)//output impedance\n",
+"mprintf('the amplifier output impedance as per seen by 50 ohm \nresistance is %f ohm',Zo)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: SSA_Ex_2_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.4 page no 30\n",
+"//given\n",
+"VDS=15\n",
+"IDSS=8*10^-3\n",
+"gmo=4*10^-3\n",
+"rd=13*10^3\n",
+"ID=2*10^-3//drain current\n",
+"Vs=0//source is grounded Vgs=Vg-Vs=Vi\n",
+"RL=2*10^3//load resistance\n",
+"R_L=(RL*rd)/(RL+rd)//equivalent load resistance\n",
+"gm=gmo*sqrt(ID/IDSS)//transconductance\n",
+"Av=-gm*R_L//voltage gain Av=Vo/Vi=-gm*R_L\n",
+"mprintf('the midband voltage gain is %f ',Av)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: SSA_Ex_2_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.5 page no 32\n",
+"//given\n",
+"gm=60*10^-3//transconductance\n",
+"Si=50//antenna source impedance\n",
+"rd=2.5*10^3\n",
+"Zo=rd/(1+gm*rd)//output impedance without load\n",
+"RL=200//load resistance\n",
+"zo1=200*Zo/(200+Zo)//output impedance with load\n",
+"Av=gm*(rd*RL/rd+RL)/(1+gm*(rd*RL/rd+RL))//voltage gain\n",
+"mprintf('the voltage gain is %f ',Av)\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: SSA_Ex_2_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.6 page no 36\n",
+"//given\n",
+"RL=50//load resistance\n",
+"gm=0.2//tranceconductance\n",
+"B=100//current gain\n",
+"rpi=B/gm//transistor input resistance\n",
+"disp(rpi,'the transistor input resistance is ')\n",
+"disp('The load resistance seen bythe first stage will be the 2k ohm resistor in parallel with Rb2 and the input impedance of the second stage That is R_L=1.05*10^3')\n",
+"R_L=1.05*10^3\n",
+"Rs=500//source resistance\n",
+"IC1=2*10^-3//collector bias current\n",
+"gm1=40*IC1//tranceconductance\n",
+"disp(gm1,'the tranceconductance is in ohm ')\n",
+"rpi1=B/gm1//transistor input resistance\n",
+"disp(rpi1,'the transistor input resistance is in ohm ')\n",
+"Av1=-gm1*R_L*(rpi1/(rpi1+Rs))//the voltage gain of first \n",
+"disp(Av1,'the voltage gain of second stage is closed to unity the voltage gain of first is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: SSA_Ex_2_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.8 page no 42\n",
+"//given\n",
+"disp('Assuming Vi (input voltage)=1')\n",
+"V1=(5+10^6)/(5+2*10^6)//voltage on the positive terminal\n",
+"V2=10^6/(5+2*10^6)//the voltage on the inverting terminal\n",
+"ed=V1-V2//differential voltage\n",
+"ec=(V1+V2)/2//common-mode voltage\n",
+"Ad=2*10^3//differentail gain\n",
+"Ac=2*10^-3//common mode gain (here 20% of differentail gain)\n",
+"Vo=Ad*ed+Ac*ec//actual amplifier output\n",
+"mprintf('the voltage gain is %3.2e Volts',Vo)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: SSA_Ex_2_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter 2:Small Signal Amplifiers\n",
+"//example 2.9 page no 45\n",
+"//given\n",
+"ed=5*10^-3//differential voltage\n",
+"ec=2.5*10^-3//common-mode voltage\n",
+"gm=1.5*10^-3//tranceconductance\n",
+"rd=500*10^3\n",
+"Rs=150*10^3//source resistance\n",
+"RL=10*10^3//load resistance\n",
+"Ac=-gm*RL/(1+2*gm*Rs)//common mode gain \n",
+"Ad=gm*RL/2//differential gain\n",
+"Vo=ec*Ac+ed*Ad//actual amplifier output\n",
+"mprintf('the output to the applied signal is %f mV',Vo*1e3)\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}