diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb')
-rw-r--r-- | Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb b/Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb new file mode 100644 index 0000000..f9c228a --- /dev/null +++ b/Modern_Communication_Circuits_by_J_R_Smith/2-Small_Signal_Amplifiers.ipynb @@ -0,0 +1,428 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Small Signal Amplifiers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: SSA_Ex_2_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.10 page no 51\n", +"//given\n", +"Z1=1*10^3//asumming impedance value for required specification\n", +"Av=-50//voltage gain\n", +"Zf=-Av*Z1//feedback impedance\n", +"mprintf('Z1=%d K ohm \n feedback impedance (Zf)= %d K ohm',Z1*1e-3,Zf*1e-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: SSA_Ex_2_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.11 pag no 51\n", +"//given\n", +"wL=10^6//bandwidth\n", +"R1=1*10^3//taking resistance value for required specification\n", +"Av=-50//voltage gain\n", +"Rf=-Av*R1//feedback resistance\n", +"C=(wL*Rf)^-1//capacitance\n", +"mprintf('R1=%d K ohm \n feedback resistance= %d K ohm \n capacitance= %d pF',R1*1e-3,Rf*1e-3,C*1e12)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12: SSA_Ex_2_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.12 page no 53\n", +"//given\n", +"Aa=10^4//open loop gain\n", +"Rf=10^4//feedback resistance\n", +"Ri=100//input resistance\n", +"Av=-(Rf/Ri)/(1+(Ri+Rf)*(Aa*Ri))//actual amplifier gain\n", +"disp(Av,'the actual amplifier gain is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: SSA_Ex_2_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Bipolar transistor amplifiers\n", +"//example 2.13 page no 53\n", +"//given\n", +"G=90//low frequency gain in dB\n", +"Ao=(G/20)//low frequency open loop gain\n", +"wT=150*10^6//gain bandwidth product\n", +"wo=wT/Ao//bandwidth\n", +"disp('the transfer function is')\n", +"disp('Av=3.16*e4/(1+jw/(2*pi*4.7*e3))')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.14: SSA_Ex_2_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.14 page no 57\n", +"//given\n", +"Z1=1*10^3//assuming impedance value for required specification\n", +"Av=100//voltage gain\n", +"Z2=(Av-1)*Z1\n", +"mprintf('Z1=%d Kohm \n Z2=%d Kohm',Z1*1e-3,Z2*1e-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: SSA_Ex_2_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.1 page no 17\n", +"//given\n", +"B=100//current gain\n", +"Ic=10^-3//collector bias current\n", +"//kT/q=0.026 where as k=Boltzmanns constant T=temperature q=charge on an electron\n", +"rpi=(0.026*B)/Ic//base emitter resistance\n", +"mprintf('the base emitter resistance is %d ohm',rpi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: SSA_Ex_2_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.2 page no 22\n", +"//given\n", +"Ic=10^-3//collector bias current\n", +"B=100//current gain\n", +"RL=4*10^3//load resistance\n", +"Rs=50//source resistance\n", +"gm=40*Ic//transconductance\n", +"rpi=B/gm//base emitter resistance\n", +"Av=(B*RL)/(rpi+Rs*(1+B))//voltage gain\n", +"disp(Av,'the voltage gain is ')\n", +"Ai=B/(1+B)//current gain\n", +"disp(Ai,'the current gain is ')\n", +"Zi=1/gm//input impedance\n", +"mprintf('the input impedance is %d ohm',Zi)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: SSA_Ex_2_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.3 page no 25\n", +"//given\n", +"Ic=40*10^-3//collector bias current\n", +"B=40//current gain\n", +"RL=50//load resistance\n", +"Rs=50//source resistance\n", +"rpi=(0.026*B)/Ic//base emitter resistance\n", +"Av=(B*RL)/(rpi+Rs+(1+B)*RL)//voltage gain\n", +"Ai=(1+B)//current gain\n", +"Ap=Ai*Av//power gain\n", +"mprintf('the power gain is %f \n',Ap)\n", +"Zo=(rpi+Rs)/(1+B)//output impedance\n", +"mprintf('the amplifier output impedance as per seen by 50 ohm \nresistance is %f ohm',Zo)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: SSA_Ex_2_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.4 page no 30\n", +"//given\n", +"VDS=15\n", +"IDSS=8*10^-3\n", +"gmo=4*10^-3\n", +"rd=13*10^3\n", +"ID=2*10^-3//drain current\n", +"Vs=0//source is grounded Vgs=Vg-Vs=Vi\n", +"RL=2*10^3//load resistance\n", +"R_L=(RL*rd)/(RL+rd)//equivalent load resistance\n", +"gm=gmo*sqrt(ID/IDSS)//transconductance\n", +"Av=-gm*R_L//voltage gain Av=Vo/Vi=-gm*R_L\n", +"mprintf('the midband voltage gain is %f ',Av)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: SSA_Ex_2_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.5 page no 32\n", +"//given\n", +"gm=60*10^-3//transconductance\n", +"Si=50//antenna source impedance\n", +"rd=2.5*10^3\n", +"Zo=rd/(1+gm*rd)//output impedance without load\n", +"RL=200//load resistance\n", +"zo1=200*Zo/(200+Zo)//output impedance with load\n", +"Av=gm*(rd*RL/rd+RL)/(1+gm*(rd*RL/rd+RL))//voltage gain\n", +"mprintf('the voltage gain is %f ',Av)\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: SSA_Ex_2_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.6 page no 36\n", +"//given\n", +"RL=50//load resistance\n", +"gm=0.2//tranceconductance\n", +"B=100//current gain\n", +"rpi=B/gm//transistor input resistance\n", +"disp(rpi,'the transistor input resistance is ')\n", +"disp('The load resistance seen bythe first stage will be the 2k ohm resistor in parallel with Rb2 and the input impedance of the second stage That is R_L=1.05*10^3')\n", +"R_L=1.05*10^3\n", +"Rs=500//source resistance\n", +"IC1=2*10^-3//collector bias current\n", +"gm1=40*IC1//tranceconductance\n", +"disp(gm1,'the tranceconductance is in ohm ')\n", +"rpi1=B/gm1//transistor input resistance\n", +"disp(rpi1,'the transistor input resistance is in ohm ')\n", +"Av1=-gm1*R_L*(rpi1/(rpi1+Rs))//the voltage gain of first \n", +"disp(Av1,'the voltage gain of second stage is closed to unity the voltage gain of first is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: SSA_Ex_2_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.8 page no 42\n", +"//given\n", +"disp('Assuming Vi (input voltage)=1')\n", +"V1=(5+10^6)/(5+2*10^6)//voltage on the positive terminal\n", +"V2=10^6/(5+2*10^6)//the voltage on the inverting terminal\n", +"ed=V1-V2//differential voltage\n", +"ec=(V1+V2)/2//common-mode voltage\n", +"Ad=2*10^3//differentail gain\n", +"Ac=2*10^-3//common mode gain (here 20% of differentail gain)\n", +"Vo=Ad*ed+Ac*ec//actual amplifier output\n", +"mprintf('the voltage gain is %3.2e Volts',Vo)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: SSA_Ex_2_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter 2:Small Signal Amplifiers\n", +"//example 2.9 page no 45\n", +"//given\n", +"ed=5*10^-3//differential voltage\n", +"ec=2.5*10^-3//common-mode voltage\n", +"gm=1.5*10^-3//tranceconductance\n", +"rd=500*10^3\n", +"Rs=150*10^3//source resistance\n", +"RL=10*10^3//load resistance\n", +"Ac=-gm*RL/(1+2*gm*Rs)//common mode gain \n", +"Ad=gm*RL/2//differential gain\n", +"Vo=ec*Ac+ed*Ad//actual amplifier output\n", +"mprintf('the output to the applied signal is %f mV',Vo*1e3)\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |