diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb')
-rw-r--r-- | Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb | 258 |
1 files changed, 258 insertions, 0 deletions
diff --git a/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb new file mode 100644 index 0000000..a8093c5 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb @@ -0,0 +1,258 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Repeated Loading" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Design_of_a_Shaft_using_the_Soderberg_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.1 Page No.93\n');\n", +"SF=2; //[] Safety factor\n", +"F=500; //[lb] Load\n", +"L=40; //[in] Length of shaft\n", +"Su=95000; //[lb/in^2] Ultimate strength (Appendix 4)\n", +"Sy=60000; //[lb/in^2] Yield strength (Appendix 4)\n", +"Mmax=F*L/4; //[lb*in] Maximum bending moment\n", +"Mmin=-F*L/4; //[lb/in^2] Minimum bending moment\n", +"Csurface=1; //[] As surface is polished\n", +"Csize=0.85; //[] Assuming 0.5<D<2\n", +"Ctype=1; //[] Bending stress\n", +"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Endurance limit\n", +"if Mmax==abs(Mmin) then\n", +" Sm=0; //[lb/in^2] Mean stress\n", +"end\n", +"Sa=Sn/SF; //[lb/in^2] As (1/SF)=(Sm/Sy)+(Sa/Sn) from soderberg equation\n", +"Sa_Z=(Mmax-Mmin)/2; //[lb*in^2] Product of altenating stress and section modulus\n", +"Z=Sa_Z/Sa; //[in^4] Section modulus\n", +"D=(32*Z/%pi)^(1/3); //[in] Diameter of shaft\n", +"D1=1.375; //[in] Next higher available is 1.375 in. so use D1\n", +"mprintf('\n The required diameter of rotating shaft is %f in.', D1);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Design_of_a_Cantilever_Beam_using_the_Soderberg_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.2 Page No.95\n');\n", +"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n", +"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n", +"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n", +"SF=1.6; //[] Safety factor\n", +"F=1000; //[lb] Load\n", +"L=12; //[in] Length of cantilever beam\n", +"Mmax=F*L; //[lb*in] Maximum bending moment\n", +"Mmin=0; //[lb*in] Minimum bending moment\n", +"Csize=0.85 //[] Assuming 0.5<D<2 in\n", +"Ctype=1; //[] Bending stress\n", +"Csurface=1; //[] As surface is polished\n", +"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n", +"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n", +"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n", +"Z=((Mmean/Sy)+(Malt/Sn))*SF; //[in^3] Section modulus\n", +"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n", +"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Design_of_a_Cantilever_Beam_using_the_Modified_Goodman_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.3 Page No.97\n');\n", +"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n", +"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n", +"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n", +"SF=1.6; //[] Safety factor\n", +"F=1000; //[lb] Load\n", +"L=12; //[in] Length of cantilever beam\n", +"Mmax=F*L; //[lb*in] Maximum bending moment\n", +"Mmin=0; //[lb*in] Minimum bending moment\n", +"Csize=0.85 //[] Assuming 0.5<D<2 in\n", +"Ctype=1; //[] Bending stress\n", +"Csurface=1; //[] As surface is polished\n", +"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n", +"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n", +"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n", +"Z=((Mmean/Su)+(Malt/Sn))*SF; //[in^3] Section modulus\n", +"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n", +"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);\n", +"//Note that the modified Goodman results in a less conservative size as would be expected from figure 5.10" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Design_of_Water_Pump_Connecting_Rod.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.4 Page No.98\n');\n", +"Su=95000; //[lb/in^2] Ultimate strength\n", +"Sy=60000; //[lb/in^2] Yield strength\n", +"SF=1.5; //[] Safety factor\n", +"Fmax=1000; //[lb] Maximum load\n", +"Fmin=-6000; //[lb] Minimum load\n", +"Fmean=(Fmax+Fmin)/2; //[lb] Mean load\n", +"Fmean=abs(Fmean); //[lb] Considering absolute value\n", +"Falt=(Fmax-Fmin)/2; //[lb] Alternating load\n", +"Csize=1 //[] Assuming b<0.5 in\n", +"Ctype=0.8 //[] Axial stress\n", +"Csurface=0.86 //[] Machined surface Figure 5.7b\n", +"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n", +"A=((Fmean/Sy)+(Falt/Sn))*SF; //[in^2] Area of cross section of rod\n", +"b=sqrt(A); //[in] Side of square cross section\n", +"mprintf('\n The required square size in the center section is %f in.',b);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: Factor_of_Safety_for_Design_with_Stress_Concentration_Factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.5 Page No.100\n');\n", +"Su=80000; //[lb/in^2] Ultimate strength\n", +"Sy=71000; //[lb/in^2] Yield strength\n", +"D=0.6; //[in] Diameter of shaft\n", +"d=0.5; //[in] Diameter of shaft at notch\n", +"r=0.05; //[in] Radius of notch\n", +"Z=%pi*d^3/16; //[in^3] Polar section modulus\n", +"Tmax=200; //[lb*in] Maximum load\n", +"Tmin=0; //[lb*in] Minimum load\n", +"Smax=Tmax/Z; //[lb/in^2] Maximum stress\n", +"Smin=Tmin/Z; //[lb/in^2] Minimum stress\n", +"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n", +"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n", +"Csize=0.85; //[] Assume 0.5<D<2 in\n", +"Csurface=0.88; //[] Machined surface Figure 5.7b\n", +"Ctype=0.6; //[] Torsional stress\n", +"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n", +"Kt=1.32; //[] (D/d)=1.2, (r/d)=0.1 from Appendix 6c\n", +"N=inv(Smean/(0.5*Sy)+Kt*Salt/Sn); //[] Safety factor\n", +"mprintf('\n The factor of safety for this design is %f',N);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: Factor_of_Safety_for_Design_when_Desired_Life_is_known.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.6 Page No.102\n');\n", +"//From Example Problem 5.5\n", +"Sy=71000; //[lb/in^2] Yield strength\n", +"Smax=8148.7331 ; //[lb/in^2] Maximum stress\n", +"Smin=0; //[lb/in^2] Minimum stress\n", +"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n", +"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n", +"Sn=18000; //[lb/in^2] Modified endurance strength\n", +"Kt=1.32 //[] Stress concentration factor\n", +"Nd=100000; //[cycles] Desired life\n", +"Snn=Sn*(10^6/Nd)^0.09; //[lb/in^2]\n", +"N=inv(Smean/(0.5*Sy)+Kt*Salt/Snn); //[] Factor of safety\n", +"mprintf('\n The new factor of safety for this condition is %f.',N);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |