summaryrefslogtreecommitdiff
path: root/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb')
-rw-r--r--Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb258
1 files changed, 258 insertions, 0 deletions
diff --git a/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb
new file mode 100644
index 0000000..a8093c5
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb
@@ -0,0 +1,258 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Repeated Loading"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Design_of_a_Shaft_using_the_Soderberg_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.1 Page No.93\n');\n",
+"SF=2; //[] Safety factor\n",
+"F=500; //[lb] Load\n",
+"L=40; //[in] Length of shaft\n",
+"Su=95000; //[lb/in^2] Ultimate strength (Appendix 4)\n",
+"Sy=60000; //[lb/in^2] Yield strength (Appendix 4)\n",
+"Mmax=F*L/4; //[lb*in] Maximum bending moment\n",
+"Mmin=-F*L/4; //[lb/in^2] Minimum bending moment\n",
+"Csurface=1; //[] As surface is polished\n",
+"Csize=0.85; //[] Assuming 0.5<D<2\n",
+"Ctype=1; //[] Bending stress\n",
+"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Endurance limit\n",
+"if Mmax==abs(Mmin) then\n",
+" Sm=0; //[lb/in^2] Mean stress\n",
+"end\n",
+"Sa=Sn/SF; //[lb/in^2] As (1/SF)=(Sm/Sy)+(Sa/Sn) from soderberg equation\n",
+"Sa_Z=(Mmax-Mmin)/2; //[lb*in^2] Product of altenating stress and section modulus\n",
+"Z=Sa_Z/Sa; //[in^4] Section modulus\n",
+"D=(32*Z/%pi)^(1/3); //[in] Diameter of shaft\n",
+"D1=1.375; //[in] Next higher available is 1.375 in. so use D1\n",
+"mprintf('\n The required diameter of rotating shaft is %f in.', D1);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Design_of_a_Cantilever_Beam_using_the_Soderberg_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.2 Page No.95\n');\n",
+"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n",
+"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n",
+"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n",
+"SF=1.6; //[] Safety factor\n",
+"F=1000; //[lb] Load\n",
+"L=12; //[in] Length of cantilever beam\n",
+"Mmax=F*L; //[lb*in] Maximum bending moment\n",
+"Mmin=0; //[lb*in] Minimum bending moment\n",
+"Csize=0.85 //[] Assuming 0.5<D<2 in\n",
+"Ctype=1; //[] Bending stress\n",
+"Csurface=1; //[] As surface is polished\n",
+"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n",
+"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n",
+"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n",
+"Z=((Mmean/Sy)+(Malt/Sn))*SF; //[in^3] Section modulus\n",
+"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n",
+"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Design_of_a_Cantilever_Beam_using_the_Modified_Goodman_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.3 Page No.97\n');\n",
+"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n",
+"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n",
+"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n",
+"SF=1.6; //[] Safety factor\n",
+"F=1000; //[lb] Load\n",
+"L=12; //[in] Length of cantilever beam\n",
+"Mmax=F*L; //[lb*in] Maximum bending moment\n",
+"Mmin=0; //[lb*in] Minimum bending moment\n",
+"Csize=0.85 //[] Assuming 0.5<D<2 in\n",
+"Ctype=1; //[] Bending stress\n",
+"Csurface=1; //[] As surface is polished\n",
+"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n",
+"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n",
+"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n",
+"Z=((Mmean/Su)+(Malt/Sn))*SF; //[in^3] Section modulus\n",
+"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n",
+"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);\n",
+"//Note that the modified Goodman results in a less conservative size as would be expected from figure 5.10"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Design_of_Water_Pump_Connecting_Rod.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.4 Page No.98\n');\n",
+"Su=95000; //[lb/in^2] Ultimate strength\n",
+"Sy=60000; //[lb/in^2] Yield strength\n",
+"SF=1.5; //[] Safety factor\n",
+"Fmax=1000; //[lb] Maximum load\n",
+"Fmin=-6000; //[lb] Minimum load\n",
+"Fmean=(Fmax+Fmin)/2; //[lb] Mean load\n",
+"Fmean=abs(Fmean); //[lb] Considering absolute value\n",
+"Falt=(Fmax-Fmin)/2; //[lb] Alternating load\n",
+"Csize=1 //[] Assuming b<0.5 in\n",
+"Ctype=0.8 //[] Axial stress\n",
+"Csurface=0.86 //[] Machined surface Figure 5.7b\n",
+"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n",
+"A=((Fmean/Sy)+(Falt/Sn))*SF; //[in^2] Area of cross section of rod\n",
+"b=sqrt(A); //[in] Side of square cross section\n",
+"mprintf('\n The required square size in the center section is %f in.',b);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Factor_of_Safety_for_Design_with_Stress_Concentration_Factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.5 Page No.100\n');\n",
+"Su=80000; //[lb/in^2] Ultimate strength\n",
+"Sy=71000; //[lb/in^2] Yield strength\n",
+"D=0.6; //[in] Diameter of shaft\n",
+"d=0.5; //[in] Diameter of shaft at notch\n",
+"r=0.05; //[in] Radius of notch\n",
+"Z=%pi*d^3/16; //[in^3] Polar section modulus\n",
+"Tmax=200; //[lb*in] Maximum load\n",
+"Tmin=0; //[lb*in] Minimum load\n",
+"Smax=Tmax/Z; //[lb/in^2] Maximum stress\n",
+"Smin=Tmin/Z; //[lb/in^2] Minimum stress\n",
+"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n",
+"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n",
+"Csize=0.85; //[] Assume 0.5<D<2 in\n",
+"Csurface=0.88; //[] Machined surface Figure 5.7b\n",
+"Ctype=0.6; //[] Torsional stress\n",
+"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n",
+"Kt=1.32; //[] (D/d)=1.2, (r/d)=0.1 from Appendix 6c\n",
+"N=inv(Smean/(0.5*Sy)+Kt*Salt/Sn); //[] Safety factor\n",
+"mprintf('\n The factor of safety for this design is %f',N);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Factor_of_Safety_for_Design_when_Desired_Life_is_known.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.6 Page No.102\n');\n",
+"//From Example Problem 5.5\n",
+"Sy=71000; //[lb/in^2] Yield strength\n",
+"Smax=8148.7331 ; //[lb/in^2] Maximum stress\n",
+"Smin=0; //[lb/in^2] Minimum stress\n",
+"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n",
+"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n",
+"Sn=18000; //[lb/in^2] Modified endurance strength\n",
+"Kt=1.32 //[] Stress concentration factor\n",
+"Nd=100000; //[cycles] Desired life\n",
+"Snn=Sn*(10^6/Nd)^0.09; //[lb/in^2]\n",
+"N=inv(Smean/(0.5*Sy)+Kt*Salt/Snn); //[] Factor of safety\n",
+"mprintf('\n The new factor of safety for this condition is %f.',N);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}