diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Linear_Control_Systems_by_B_S_Manke/12-CLASSIFIED_SOLVED_EXAMPLES.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Linear_Control_Systems_by_B_S_Manke/12-CLASSIFIED_SOLVED_EXAMPLES.ipynb')
-rw-r--r-- | Linear_Control_Systems_by_B_S_Manke/12-CLASSIFIED_SOLVED_EXAMPLES.ipynb | 1667 |
1 files changed, 1667 insertions, 0 deletions
diff --git a/Linear_Control_Systems_by_B_S_Manke/12-CLASSIFIED_SOLVED_EXAMPLES.ipynb b/Linear_Control_Systems_by_B_S_Manke/12-CLASSIFIED_SOLVED_EXAMPLES.ipynb new file mode 100644 index 0000000..2821b89 --- /dev/null +++ b/Linear_Control_Systems_by_B_S_Manke/12-CLASSIFIED_SOLVED_EXAMPLES.ipynb @@ -0,0 +1,1667 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: CLASSIFIED SOLVED EXAMPLES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.10: Determine_Unit_Step_Response.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:determine_unit_step_response\n", +"//example 12.10\n", +"//page 524\n", +"s=%s;\n", +"syms t;\n", +"CL=sym('1/((s+1)*(s^2+1))')\n", +"disp(CL,'C(s)/R(s)=');\n", +"//for unit step response R(s)=1/s; \n", +"d=CL*(1/s);\n", +"a=s*d;\n", +"c=ilaplace(d,s,t);\n", +"disp(c,'c(t)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.11: Determine_Unit_Step_and_Unit_Impulse_Response.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:determine_unit_step_and_unit_impulse_response\n", +"//example 12.11\n", +"//page 524\n", +"s=%s;\n", +"syms t;\n", +"G=sym('8/(s+1)');\n", +"H=sym('(1/2*s)');\n", +"CL=G/(1+G*H);\n", +"disp(CL,'C(s)/R(s)=');\n", +"//for unit step response R(s)=1/s; \n", +"d=CL*(1/s);\n", +"disp(d,'C(s)=');\n", +"c=ilaplace(d,s,t);\n", +"disp(c,'unit step response,c(t)=');\n", +"//for unit impulse response R(s)=1; \n", +"e=CL*(1);\n", +"disp(e,'C(s)=');\n", +"ct=ilaplace(e,s,t);\n", +"disp(ct,'unit impulse response,c(t)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.12: Determine_Wn_Wd_zeta_and_steady_state_error.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:determine_Wn,Wd,zeta_and_steady_state_error\n", +"//example 12_12\n", +"//page 526\n", +"s=%s;\n", +"G=sym('20/(s*(s^2+6*s+6))');\n", +"H=0.25;\n", +"CL=G/(1+G*H);\n", +"CL=simple(CL);\n", +"disp(CL,'C(s)/R(s)=');\n", +"printf('the char. eq is:')\n", +"disp('s^2+s+1=0')\n", +"Wn=sqrt(1)//natural_frequency\n", +"//2*zeta*Wn=1\n", +"zeta=1/(2*Wn);//damping ratio\n", +"d=zeta*Wn;//damping_factor\n", +"z=sqrt(1-zeta^2);\n", +"Wd=Wn*z;//damped_frequency_of_oscillation\n", +"Mp=exp((-zeta*%pi)/z)*100;//%_max.peak_overshoot\n", +"ts=4/(zeta*Wn);//settling_time\n", +"tp=%pi/(Wn*sqrt(1-zeta^2));//peak_time\n", +"tu=2*%pi/(Wn*sqrt(1-zeta^2));//first under shoot\n", +"ti=tu-tp;//time interval between max. and min. values\n", +"disp(Wn,'natural_frequency=');\n", +"disp(zeta,'damping ratio=');\n", +"disp(Wd,'damped_frequency_of_oscillation=');\n", +"disp(Mp,'%_max.peak_overshoot=');\n", +"disp(ts,'settling_time=');\n", +"disp(tp,'peak_time=');\n", +"disp(ti,'time_interval_between_max_and_min_values=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.13: Determine_Wn_Wd_zeta_and_steady_state_error.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:determine_Wn,Wd,zeta_and_steady_state_error\n", +"//example 12_13\n", +"//page 527\n", +"syms Kp K Kd T \n", +"s=%s;\n", +"//exec series.sce;\n", +"//exec parallel.sce;\n", +"a=(Kp+s*Kd)*K\n", +"b=1/(s*(s*T+1))\n", +"G=series(a,b)\n", +"H=1;\n", +"er=1/(1+G*H)\n", +"disp(er,'E(s)/R(s)=');\n", +"R=1/s^2\n", +"E=R*er\n", +"ess=limit(s*E,s,0)\n", +"disp(ess,'steady state error,ess=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.15: Stability_Using_Routh_Hurwitz_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Routh-hurwitz_criterion\n", +"//example 12.15\n", +"//page 529\n", +"s=%s;\n", +"syms K\n", +"G=sym('K/(s*(s^2+s+1)*(s+5)');\n", +"H=1;\n", +"CH=(s*(s^2+s+1)*(s+5)+K)\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"c4=coeffs(CH,'s',4);\n", +"b=[c0 c1 c2 c3 c4 ]\n", +"routh=[b([5,3,1]);b([4,2]),0]\n", +"routh=[routh;-det(routh(1:2,1:2)/routh(2,1)),K,0]\n", +"t=routh(2:3,1:2)\n", +"routh=[routh;-det(t)/t(2,1),0,0]\n", +"routh=[routh;K,0,0]\n", +"disp(routh,'routh=')\n", +"disp('for given system to be stable:');\n", +"disp('((5.1*5-6*K)/5.1)>0 and K>0');\n", +"disp('which gives:');\n", +"disp('0<K<4.25');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.16: Stability_Using_Routh_Hurwitz_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Routh-hurwitz_criterion\n", +"//example 12.16\n", +"//page 530\n", +"s=%s;\n", +"syms K\n", +"CH=s^4+2*s^3+10*s^2+(K-10)*s+K\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"c4=coeffs(CH,'s',4);\n", +"b=[c0 c1 c2 c3 c4 ]\n", +"routh=[b([5,3,1]);b([4,2]),0]\n", +"routh=[routh;-det(routh(1:2,1:2)/routh(2,1)),K,0]\n", +"routh(3,1)=simple(routh(3,1))\n", +"t=routh(2:3,1:2)\n", +"l=simple(-det(t)/t(2,1))\n", +"routh=[routh;l,0,0]\n", +"//routh=[routh;K,0,0]\n", +"disp(routh,'routh=')\n", +"disp('for given system to be stable,following condition should be satisfied');\n", +"disp('K<30,K<22.9 and K>13.1,K>0')\n", +"disp('which gives,')\n", +"disp('13.1<K<22.9');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.17: Stability_Using_Routh_Hurwitz_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Routh-hurwitz_criterion\n", +"//example 12.17\n", +"//page 530\n", +"s=%s;\n", +"syms K\n", +"G=sym('K/((s^3+3*s+2)*(s^2+6*s+24))');\n", +"H=1;\n", +"CH=((s^3+3*s+2)*(s^2+6*s+24)+K)\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"c4=coeffs(CH,'s',4);\n", +"b=[c0 c1 c2 c3 c4 ]\n", +"routh=[b([5,3,1]);b([4,2]),0]\n", +"routh=[routh;-det(routh(1:2,1:2))/routh(2,1),routh(1,3),0]\n", +"routh(3,1)=simple(routh(3,1))\n", +"t=routh(2:3,1:2)\n", +"l=simple(-det(t)/t(2,1))\n", +"routh=[routh;l,0,0]\n", +"//routh=[routh;K,0,0]\n", +"disp(routh,'routh=')\n", +"disp('for given system to be stable,following condition should be satisfied');\n", +"disp('78.84-0.259K>0')\n", +"disp('which gives limiting value of K')\n", +"disp('K<288.9');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.18: Stability_Using_Routh_Hurwitz_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Routh-hurwitz_criterion\n", +"//example 12.18\n", +"//page 531\n", +"s=%s;\n", +"A=s^5+s^4+4*s^3+4*s^2+s+1;\n", +"b=coeff(A)\n", +"n=length(b)\n", +"routh=[b([6 4 2]);b([5 3 1])]\n", +"routh1=routh;\n", +"c=[routh(1,1),routh(1,3);routh(2,1),routh(2,3)]\n", +"routh=[routh;-det(routh(1:2,1:2))/routh(2,1),-det(c)/routh(2,1),0]\n", +"disp('since all elements of third row are zero, so we make auxiliary equation')\n", +"A=sym('s^4+4*s^2+1')//auxiliary equation\n", +"B=diff(A,s)\n", +"routh=[routh1;4,8,0]\n", +"d=[routh(2,1),routh(2,3);routh(3,1),routh(3,3)]\n", +"routh=[routh;-det(routh(2:3,1:2))/routh(3,1),-det(d)/routh(3,1),0]\n", +"routh2=routh\n", +"routh=[routh;-det(routh(3:4,1:2))/routh(4,1),0,0]\n", +"routh=[routh;-det(routh(4:5,1:2))/routh(5,1),0,0];\n", +"disp(routh,'routh=')\n", +"disp('stability is examined as below . since roots of auxiliary eq are also roots of characterstics eq')\n", +"A=s^4+4*s^2+1\n", +"b=roots(A)\n", +"disp('since the equation has non repeating roots on s plane imaginary axis.hence system are unstable' )\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.19: Stability_Using_Routh_Hurwitz_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Routh-hurwitz_criterion\n", +"//example 12.19\n", +"//page 531\n", +"s=%s;\n", +"A=s^5+s^4+4*s^3+4*s^2+4*s+4;\n", +"b=coeff(A)\n", +"n=length(b)\n", +"routh=[b([6,4,2]);b([5 3 1])]\n", +"routh1=routh;\n", +"c=[routh(1,1),routh(1,3);routh(2,1),routh(2,3)]\n", +"routh=[routh;-det(routh(1:2,1:2))/routh(2,1),-det(c)/routh(2,1),0]\n", +"disp('since all elements of third row are zero, so we make auxiliary equation')\n", +"A=sym('s^4+4*s^2+4')//auxiliary equation\n", +"B=diff(A,s)\n", +"routh=[routh1;4,8,0]\n", +"d=[routh(2,1),routh(2,3);routh(3,1),routh(3,3)]\n", +"routh=[routh;-det(routh(2:3,1:2))/routh(3,1),-det(d)/routh(3,1),0]\n", +"routh2=routh\n", +"routh=[routh;-det(routh(3:4,1:2))/routh(4,1),0,0]\n", +"disp('since all elements of fifth row are zero, so we make auxiliary equation')\n", +"A=sym('2*s^2+4')//auxiliary equation\n", +"B=diff(A,s)\n", +"routh=[routh2;4,0,0]\n", +"routh=[routh;-det(routh(4:5,1:2))/routh(5,1),0,0];\n", +"disp(routh,'routh=')\n", +"disp('stability is examined as below . since roots of auxiliary eq are also roots of characterstics eq')\n", +"A=s^4+4*s^2+4\n", +"b=roots(A)\n", +"disp('since the equation has multiple roots on s plane imaginary axis.hence system are unstable' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Transfer_Function.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:transfer_function\n", +"// example 12.1\n", +"//page 515\n", +"// we are solving this problem from signal flow graph approach\n", +"syms G H;\n", +"// forward path denoted by P1,P2 and so on and loop by L1,L2 and so on \n", +"//path factor by D1,D2 and so on and graph determinant by D\n", +"P1=1*G*1\n", +"P2=1;\n", +"L1=-G;\n", +"L2=-G*H;\n", +"L3=G*H;\n", +"D1=1;\n", +"D2=1;\n", +"D=1-(L1+L2+L3);\n", +"D=simple(D)\n", +"Y=(P1*D1+P2*D2)/D;\n", +"Y=simple(Y);\n", +"disp(Y,'C(s)/R(s)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.21: Determine_Frequency_of_Oscillations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:determine_frequency_of_oscillations\n", +"//example 12.21\n", +"//page 533\n", +"s=%s;\n", +"syms K\n", +"G=sym('K*(s*(2*s+1))/(s^3+3*s+20)');\n", +"H=1;\n", +"CH=((s^3+3*s+20)+K*(s*(2*s+1)))\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"b=[c0 c1 c2 c3]\n", +"routh=[b([4,2]);b([3,1])]\n", +"routh=[routh;-det(routh(1:2,1:2)/routh(2,1)),0]\n", +"routh(3,1)=simple(routh(3,1))\n", +"t=routh(2:3,1:2)\n", +"l=simple(-det(t)/t(2,1))\n", +"routh=[routh;l,0]\n", +"disp(routh,'routh=')\n", +"disp('for sustained oscillations:');\n", +"disp('2*K^2+6*K-20=0')\n", +"disp('which gives K')\n", +"disp('K=2');\n", +"disp('freq of oscillations is calculated by solving equation formed by s^2 row of the routh table')\n", +"K=2\n", +"k=2\n", +"A=2*k*s^2+20\n", +"r=roots(A)\n", +"disp(%i*r(2),'frequency of oscillations=' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.23_iii: Stability_Using_Nyquist_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Nyquist_criterion\n", +"//example 12_23_iii\n", +"//page 535\n", +"disp('for K=10')\n", +"g=(10*(s+10)*(s+40))/(s*(s+1)*(s+4));\n", +"g1=(10*(s1+10)*(s1+40))/(s1*(s1+1)*(s1+4));\n", +"GH=syslin('c',g);\n", +"GH1=syslin('c',g1);\n", +"nyquist(GH);\n", +"nyquist(GH1);\n", +"//mtlb_axis([-1.5 0.2 -0.3 0.3]);\n", +"xtitle('Nyquist plot of (0.1*(s+10)*(s+40))/(s*(s+1)*(s+4))')\n", +"figure;\n", +"show_margins(GH,'nyquist')\n", +"disp('since the point(-1+%i0) is encircled once in clockwise and once in anti clockwise direction by Nyquist plot ,so N=0 and P=0')\n", +"N=0;//no. of encirclement of -1+%i0 by G(s)H(s) plot anticlockwise\n", +"P=0;//no. of poles of G(s)H(s) with positive real part\n", +"Z=P-N;//np.of zeros of 1+G(s)H(s)=0 with positive real part\n", +"disp(Z,'Z=')\n", +"disp('as Z=0,there are no roots of closed loop characterstics eq having positive real part, hence system is stable.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.23_ii: Stability_Using_Nyquist_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Nyquist_criterion\n", +"//example 12_23_ii\n", +"//page 535\n", +"disp('for K=1')\n", +"g=(0.1*(s+10)*(s+40))/(s*(s+1)*(s+4));\n", +"g1=(0.1*(s1+10)*(s1+40))/(s1*(s1+1)*(s1+4));\n", +"GH=syslin('c',g);\n", +"GH1=syslin('c',g1);\n", +"nyquist(GH);\n", +"nyquist(GH1);\n", +"//mtlb_axis([-3 0.5 -0.6 0.6]);\n", +"xtitle('Nyquist plot of (0.1*(s+10)*(s+40))/(s*(s+1)*(s+4))')\n", +"figure;\n", +"show_margins(GH,'nyquist')\n", +"disp('since the point(-1+%i0) is encircled twice clockwise by Nyquist plot ,so N=2 and P=0(given)')\n", +"N=-2;//no. of encirclement of -1+%i0 by G(s)H(s) plot anticlockwise\n", +"P=0;//no. of poles of G(s)H(s) with positive real part\n", +"Z=P-N;//np.of zeros of 1+G(s)H(s)=0 with positive real part\n", +"disp(Z,'Z=')\n", +"disp('as Z=2,there are two roots of closed loop characterstics eq having positive real part, hence system is unstable.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.23_i: Stability_Using_Nyquist_Criterion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:stability_using_Nyquist_criterion\n", +"//example 12_23_i\n", +"//page 535\n", +"clf();\n", +"s=%s;\n", +"s1=-s;\n", +"disp('for K=0.1')\n", +"g=(0.1*(s+10)*(s+40))/(s*(s+1)*(s+4));\n", +"g1=(0.1*(s1+10)*(s1+40))/(s1*(s1+1)*(s1+4));\n", +"GH=syslin('c',g);\n", +"GH1=syslin('c',g1);\n", +"nyquist(GH);\n", +"nyquist(GH1);\n", +"//mtlb_axis([-1.5 0.2 -0.3 0.3]);\n", +"xtitle('Nyquist plot of (0.1*(s+10)*(s+40))/(s*(s+1)*(s+4))')\n", +"figure;\n", +"show_margins(GH,'nyquist')\n", +"disp('since the point(-1+%i0) is not encircled clockwise by Nyquist plot ,so N=0 and P=0')\n", +"N=0;//no. of encirclement of -1+%i0 by G(s)H(s) plot anticlockwise\n", +"P=0;//no. of poles of G(s)H(s) with positive real part\n", +"Z=P-N;//np.of zeros of 1+G(s)H(s)=0 with positive real part\n", +"disp(Z,'Z=')\n", +"disp('as Z=0,there are no roots of closed loop characterstics eq having positive real part, hence system is stable.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.27: Gain_and_Phase_Margin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:gain_and_phase_margin\n", +"//example 12_27\n", +"//page543\n", +"clf();\n", +"s=%s;\n", +"s1=-s;\n", +"disp('for K=0.5')\n", +"g=(0.5)/(s*(s+1)^2);\n", +"GH=syslin('c',g);\n", +"nyquist(GH);\n", +"//mtlb_axis([-5 1 -500 500]);\n", +"xtitle('Nyquist plot of (2.5*3)/(s*(0.4*s+1)*(0.2*s+1))')\n", +"pm=p_margin(GH)\n", +"disp(pm,'phase margin=')\n", +"gm=g_margin(GH)\n", +"disp(gm,'gain margin=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Transfer_Function.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:transfer_function\n", +"// example 12.2\n", +"//page 516\n", +"// we are solving this problem from signal flow graph approach\n", +"syms G1 G2 G3 G4\n", +"// forward path denoted by P1,P2 and so on and loop by L1,L2 and so on \n", +"//path factor by D1,D2 and so on and graph determinant by D\n", +"P1=G1;\n", +"P2=G2;\n", +"P3=-G1*G2*G3;\n", +"P4=G1*G2*G4;\n", +"L1=-G1*G2*G3*G4;\n", +"D1=1;\n", +"D2=1;\n", +"D3=1;\n", +"D4=1;\n", +"D=1-(L1);\n", +"Y=(P1*D1+P2*D2+P3*D3+P4*D4)/D;\n", +"Y=simple(Y);\n", +"disp(Y,'C(s)/R(s)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.33: Determine_Close_Loop_Stability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:determine_close_loop_stability\n", +"//example 12_33\n", +"//page 550\n", +"s=%s;\n", +"g=(720*(s+1.25))/(s*(s+10)*(s^2+2*s+9));\n", +"G=syslin('c',g)\n", +"fmin=0.1; \n", +"fmax=100; \n", +"bode(G, fmin, fmax) \n", +"[gm,freqGM]=g_margin(G);\n", +"[pm,freqPM]=p_margin(G);\n", +"show_margins(G);\n", +"disp(gm,'gain_margin=');\n", +"disp((freqGM*2*%pi),'gain_margin_freq=');\n", +"disp(pm,'phase_margin=');\n", +"disp((freqPM*2*%pi),'phase_margin_freq=');\n", +"show_margins(G);\n", +"disp('since gain and phase margin are both negative so system is unstable')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Transfer_Function.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:transfer_function\n", +"// example 12.3\n", +"//page 517\n", +"// we are solving this problem from signal flow graph approach\n", +"syms G1 G2 G3 G4 H2 H1 H3\n", +"// forward path denoted by P1,P2 and so on and loop by L1,L2 and so on \n", +"//path factor by D1,D2 and so on and graph determinant by D\n", +"P1=G2*G4;\n", +"P2=G2*G3*G4;\n", +"P3=G1*G3*G4;\n", +"L1=-G4*H1;\n", +"L2=-G3*G4*H1*H2;\n", +"L3=-G1*G3*G4*H1*H2*H3\n", +"D1=1;\n", +"D2=1;\n", +"D3=1;\n", +"D=1-(L1+L2+L3);\n", +"Y=(P1*D1+P2*D2+P3*D3)/D;\n", +"Y=simple(Y);\n", +"disp(Y,'C(s)/R(s)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.42: Root_Locus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus\n", +"//example 12_42\n", +"//page 562\n", +"s=%s;\n", +"syms K;\n", +"GH=K/(s*(s+2)*(s+4))\n", +"//since Mp=40%, so .4=exp((-zeta*%pi)/(sqrt(1-zeta^2))\n", +"zeta=0.3\n", +"//from given data \n", +"disp('the characterstics eq. is determined as:')\n", +"CH=(s*(s+2)*(s+4))+K\n", +"K=sym('-(s^3+6*s^2+8*s)')\n", +"d=diff(K,s)\n", +"e=-3*s^2-12*s-8 \n", +"r1=roots(e)\n", +"disp(r1,'roots=')\n", +"disp('-0.842 is break away point sinc it lies on root locus')\n", +"CH=sym('s^3+6*s^2+8*s+K');\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"b=[c0 c1 c2 c3]\n", +"n=4;\n", +"routh=[b([4,2]);b([3,1])];\n", +"routh=[routh;-det(routh)/routh(2,1),0]\n", +"t=routh(2:3,1:2)\n", +"routh=[routh;-det(t)/t(2,1),0]\n", +"disp(routh,'routh=')\n", +"disp('for given system to be marginally stable:');\n", +"disp('(48-K)=0 ');\n", +"disp('which gives:');\n", +"disp('K=48');\n", +"K=48;\n", +"k=48\n", +"a=6*s^2+48//intersection of root locus with imaginary plane\n", +"r=roots(a)\n", +"g=k/(s*(s+2)*(s+4))\n", +"G=syslin('c',g)\n", +"evans(g,8)\n", +"xgrid(2)\n", +"disp('the line theta=acos(zeta)=72.5 intersects root locus at sa=(-0.5+i1.65)')\n", +"disp('the value of K at s=sa is find to be 14.87 for Mp=40%')\n", +"K=14.87\n", +"ts=4/0.5 //ts=4/(zeta*wn)\n", +"Kv=limit(s*GH,s,0)\n", +"Kv=eval(Kv)\n", +"Kv=float(Kv)\n", +"disp(Kv,'Kv=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.43: Root_Locus_and_Value_of_K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_value_of_K\n", +"//example 12.43\n", +"//page 564\n", +"s=%s;\n", +"syms K;\n", +"GH=K/(s*(s+2)*(s^2+2*s+2))\n", +"disp('the characterstics eq. is determined as:')\n", +"CH=(s*(s+2)*(s^2+2*s+2))+K\n", +"CH=sym('s^4+4*s^3+6*s^2+4*s+K');\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"c4=coeffs(CH,'s',4);\n", +"b=[c0 c1 c2 c3 c4 ]\n", +"routh=[b([5,3,1]);b([4,2]),0]\n", +"routh=[routh;-det(routh(1:2,1:2))/routh(2,1),routh(1,3),0]\n", +"routh(3,1)=simple(routh(3,1))\n", +"t=routh(2:3,1:2)\n", +"l=simple(-det(t)/t(2,1))\n", +"routh=[routh;l,0,0]\n", +"routh=[routh;K,0,0]\n", +"K=sym('s^4+4*s^3+6*s^2+4*s')\n", +"d=diff(K,s)\n", +"e=-(4*s^3+12*s^2+12*s+4)\n", +"r=roots(e)\n", +"disp(routh,'routh=')\n", +"disp('for given system to be marginally stable:');\n", +"disp('((20-4K)/5)=0 ');\n", +"disp('which gives:');\n", +"disp('K=5');\n", +"K=5;\n", +"k=5\n", +"a=5*s^2+5//intersection of root locus with s plane\n", +"r=roots(a)\n", +"disp(r,'intersection point with imaginary axis=')\n", +"g=k/(s*(s+2)*(s^2+2*s+2))\n", +"G=syslin('c',g)\n", +"evans(g,200)\n", +"xgrid(2)\n", +"disp('angle of departure=-90 and +90')\n", +"disp('breakaway point is -1 and +j and -j')\n", +"disp('on solving we find K=1')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.44: Root_Locus_and_Value_of_K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_value_of_K\n", +"//example 12.44\n", +"//page 565\n", +"s=%s;\n", +"syms K;\n", +"GH=K/((s^2+2*s+5)*(s^2+2*s+2))\n", +"disp('the characterstics eq. is determined as:')\n", +"CH=((s^2+2*s+5)*(s^2+2*s+2))+K\n", +"CH=sym('((s^2+2*s+5)*(s^2+2*s+2))+K');\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"c4=coeffs(CH,'s',4);\n", +"b=[c0 c1 c2 c3 c4 ]\n", +"routh=[b([5,3,1]);b([4,2]),0]\n", +"routh=[routh;-det(routh(1:2,1:2))/routh(2,1),routh(1,3),0]\n", +"routh(3,1)=simple(routh(3,1))\n", +"t=routh(2:3,1:2)\n", +"l=simple(-det(t)/t(2,1))\n", +"routh=[routh;l,0,0]\n", +"routh=[routh;K,0,0]\n", +"K=sym('-(s^2+2*s+5)*(s^2+2*s+2)')\n", +"d=diff(K,s)\n", +"e=-(4*s^3+12*s^2+22*s+14)\n", +"r=roots(e)\n", +"disp(routh,'routh=')\n", +"disp('for given system to be marginally stable:');\n", +"disp('((7.5*14-4(K+10)/7.5)=0 ');\n", +"disp('which gives:');\n", +"disp('K=16.25');\n", +"K=16.25;\n", +"k=16.25\n", +"a=7.5*s^2+26.25//intersection of root locus with s plane\n", +"r=roots(a)\n", +"g=k/((s^2+2*s+5)*(s^2+2*s+2))\n", +"G=syslin('c',g)\n", +"evans(g,200)\n", +"xgrid(2)\n", +"disp(r,'the point of intersection of root locus with imaginary axis =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.45: Root_Locus_and_Value_of_K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_value_of_K\n", +"//example 12.45\n", +"//page 567\n", +"s=%s;\n", +"syms K;\n", +"GH=K*(s+1)/(s*(s+2)*(s^2+4*s+8))\n", +"disp('the characterstics eq. is determined as:')\n", +"CH=((s*(s+2)*(s^2+4*s+8)))+K*(s+1)\n", +"CH=sym('((s*(s+2)*(s^2+4*s+8)))+K*(s+1)');\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"c4=coeffs(CH,'s',4);\n", +"b=[c0 c1 c2 c3 c4 ]\n", +"routh=[b([5,3,1]);b([4,2]),0]\n", +"routh=[routh;-det(routh(1:2,1:2))/routh(2,1),routh(1,3),0]\n", +"routh(3,1)=simple(routh(3,1))\n", +"t=routh(2:3,1:2)\n", +"l=simple(-det(t)/t(2,1))\n", +"routh=[routh;l,0,0]\n", +"routh=[routh;K,0,0]\n", +"disp(routh,'routh=')\n", +"disp('for given system to be marginally stable:');\n", +"disp('(K^2-28*K-1280)=0 ');\n", +"disp('which gives:');\n", +"disp('K=52.4 and -24.42');\n", +"K=52.4;//considering positive value\n", +"k=52.4\n", +"a=((80-52.4)/6)*s^2+52.4//intersection of root locus with imaginary axis\n", +"r=roots(a)\n", +"g=k*(s+1)/(s*(s+2)*(s^2+4*s+8))\n", +"G=syslin('c',g)\n", +"clf();\n", +"evans(g,10)\n", +"xgrid(2)\n", +"disp(r,'the point of intersection of root locus with imaginary axis =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.46: Root_Locus_and_Value_of_K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_value_of_K\n", +"//example 12.46\n", +"//page 570\n", +"s=%s;\n", +"syms K;\n", +"GH=K/(s*((s+6)^2))\n", +"disp('the characterstics eq. is determined as:')\n", +"CH=(s*((s+6)^2))+K\n", +"CH=sym('(s*((s+6)^2))+K');\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"b=[c0 c1 c2 c3]\n", +"n=4;\n", +"routh=[b([4,2]);b([3,1])];\n", +"routh=[routh;-det(routh)/routh(2,1),0]\n", +"t=routh(2:3,1:2)\n", +"routh=[routh;-det(t)/t(2,1),0]\n", +"K=sym('-(s*((s+6)^2))')\n", +"d=diff(K,s)\n", +"e=3*s^2+24*s+36 \n", +"r1=roots(e)\n", +"disp(r1,'roots=')\n", +"disp('-2 is break away point sinc it lies on root locus')\n", +"disp(routh,'routh=')\n", +"disp('for given system to be marginally stable:');\n", +"disp('(-(K-432)/12)=0 ');\n", +"disp('which gives:');\n", +"disp('K=432');\n", +"K=432;//considering positive value\n", +"k=432\n", +"a=12*s^2+k//intersection of root locus with imaginary axis plane\n", +"r=roots(a)\n", +"g=k/(s*((s+6)^2))\n", +"G=syslin('c',g)\n", +"clf();\n", +"evans(g,5)\n", +"xgrid(2)\n", +"disp(r,'the point of intersection of root locus with imaginary axis =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.48: Root_Locus_and_Value_of_K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_value_of_K\n", +"//example 12_48\n", +"//page 574\n", +"s=%s;\n", +"syms K;\n", +"GH=K/(s*(s+2)*(s+4))\n", +"zeta=0.277\n", +"//from given data \n", +"disp('the characterstics eq. is determined as:')\n", +"CH=(s*(s+2)*(s+4))+K\n", +"K=sym('-(s^3+6*s^2+8*s)')\n", +"d=diff(K,s)\n", +"e=-3*s^2-12*s-8 \n", +"r1=roots(e)\n", +"disp(r1,'roots=')\n", +"disp('-0.85 is break away point sinc it lies on root locus')\n", +"CH=sym('s^3+6*s^2+8*s+K');\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"c0=coeffs(CH,'s',0);\n", +"c1=coeffs(CH,'s',1);\n", +"c2=coeffs(CH,'s',2);\n", +"c3=coeffs(CH,'s',3);\n", +"b=[c0 c1 c2 c3]\n", +"n=4;\n", +"routh=[b([4,2]);b([3,1])];\n", +"routh=[routh;-det(routh)/routh(2,1),0]\n", +"t=routh(2:3,1:2)\n", +"routh=[routh;-det(t)/t(2,1),0]\n", +"disp(routh,'routh=')\n", +"disp('for given system to be marginally stable:');\n", +"disp('(48-K)=0 ');\n", +"disp('which gives:');\n", +"disp('K=48');\n", +"K=48;\n", +"k=48\n", +"a=6*s^2+48//intersection of root locus with imaginary plane\n", +"r=roots(a)\n", +"g=k/(s*(s+2)*(s+4))\n", +"G=syslin('c',g)\n", +"evans(g,8)\n", +"xgrid(2)\n", +"disp('the line theta=acos(zeta)=73.9 intersects root locus at sa=(-0.5+i1.66)')\n", +"disp('the value of K at s=sa is find to be 15 for zeta=0.277')\n", +"K=15\n", +"k=15\n", +"disp(r,'the point of intersection of root locus with imaginary axis =')\n", +"g=k/(s*(s+2)*(s+4))\n", +"cl=g/(1+g)\n", +"disp(cl,'C(s)/R(s)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.49: Root_Locus_and_Value_of_K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_value_of_K\n", +"//example 12.49\n", +"//page 576\n", +"s=%s;\n", +"syms K;\n", +"GH=(K*(s+4))/(s+2)^2\n", +"disp('the characterstics eq. is determined as:')\n", +"CH=(s+2)^2+(K*(s+4))\n", +"CH=sym('((s+2)^2)+K*(s+4)');\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"K=sym('((s+2)^2/(s+4))')\n", +"d=diff(K,s)\n", +"e=(s+2)*(s+6)\n", +"r1=roots(e)\n", +"disp(r1,'roots=')\n", +"disp('-2 and -6 is break away point')\n", +"g=(s+4)/((s+2)^2)\n", +"G=syslin('c',g)\n", +"clf();\n", +"evans(g,10)\n", +"xgrid(2)\n", +"disp('for wd=2rad/sec,the point on root locus is s=-4+j2')\n", +"disp('the value of K at s=-4+j2 is 4')\n", +"K=4\n", +"k=4\n", +"g=k*(s+4)/((s+2)^2)\n", +"cl=g/(1+g)\n", +"disp(cl,'C(s)/R(s)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Transfer_Function.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:transfer_function\n", +"// example 12.4\n", +"//page 518\n", +"// we are solving this problem from signal flow graph approach\n", +"syms G1 G2 \n", +"// forward path denoted by P1,P2 and so on and loop by L1,L2 and so on \n", +"//path factor by D1,D2 and so on and graph determinant by D\n", +"P1=G1;\n", +"P2=G2;\n", +"P3=G1*G2;\n", +"P4=G1*G2;\n", +"L1=-G1;\n", +"L2=-G2;\n", +"L3=G1*G2;\n", +"L4=-G1*G2;\n", +"L5=-G1*G2;\n", +"D1=1;\n", +"D2=1;\n", +"D3=1;\n", +"D4=1;\n", +"D=1-(L1+L2+L3+L4+L5);\n", +"Y=(P1*D1+P2*D2+P3*D3+P4*D4)/D;\n", +"Y=simple(Y);\n", +"disp(Y,'C(s)/R(s)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.50: Root_Locus_and_Closed_loop_Transfer_Function.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_close_loop_transfer_function\n", +"//example 12.50\n", +"//page 578\n", +"s=%s\n", +"K=8\n", +"G=K/(s*(s+4))\n", +"H=1;\n", +"GH=G*H\n", +"G=syslin('c',G)\n", +"evans(G,8)\n", +"xgrid(2)\n", +"CH=s*(s+4)+K\n", +"disp('=0',CH,'characterstics_eq,CH=')\n", +"r=roots(CH)\n", +"disp(r,'the point at which K=8')\n", +"cl=G/(1+GH)\n", +"disp(cl,'C(s)/R(s)=')\n", +"\n", +"\n", +"\n", +"disp('part b')\n", +"g=K/(s+4)\n", +"h=1/s\n", +"gh=g*h\n", +"CL=g/(1+gh)\n", +"disp(CL,'C(s)/R(s)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.51: Root_Locus_and_Gain_and_Phase_Margin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:root_locus_and_gain,phase_margin\n", +"//example 12.51\n", +"//page 580\n", +"s=%s;\n", +"K=3.46\n", +"G=K/(s*(s+1)*(s+2))\n", +"G=syslin('c',G)\n", +"clf();\n", +"evans(G,20)\n", +"xgrid(2)\n", +"[gm,freq_gm]=g_margin(G)\n", +"[pm,freq_pm]=p_margin(G)\n", +"disp(gm,'gain_margin=',freq_gm*2*%pi,'gain_margin_freq=')\n", +"disp(pm,'phase_margin=',freq_pm*2*%pi,'phase_margin_freq=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.54: Obtain_State_Matrix.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:obtain_state_matrix\n", +"//example 12_54\n", +"//page 583\n", +"s=%s;\n", +"g=5*(s+2)/(s*(s+1)*(s+5));\n", +"CL=syslin('c',g);\n", +"disp(CL,'C(s)/R(s)=');\n", +"SS=tf2ss(CL)\n", +"[Ac,Bc,U,ind]=canon(SS(2),SS(3))\n", +"disp(SS,'state space matrix=')\n", +"disp(Ac,'Ac',Bc,'Bc',U,'U',ind,'ind')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.55: Obtain_State_Matrix.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:obtain_state_matrix\n", +"//example 12_55\n", +"//page 585\n", +"s=%s;\n", +"g=50/(s*(s^2+0.5*s+50));\n", +"CL=syslin('c',g);\n", +"disp(CL,'C(s)/R(s)=');\n", +"SS=tf2ss(CL)\n", +"[Ac,Bc,U,ind]=canon(SS(2),SS(3))\n", +"disp(SS,'state space matrix=')\n", +"disp(Ac,'Ac',Bc,'Bc',U,'U',ind,'ind')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.56: Obtain_State_Transistion_Matrix.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:obtain_state_transistion_matrix\n", +"//example 12_56\n", +"//page 586\n", +"s=%s;\n", +"syms t\n", +"A=[0 1;0 -3]\n", +"[r c]=size(A);//size of matrix A\n", +"p=s*eye(r,c)-A;//s*I-A where I is identity matrix\n", +"q=det(p)//determinant of sI-A\n", +"r=inv(p)//inverse of sI-A\n", +"//for calculating state transistion matrix\n", +"ip=[0 0;0 0]\n", +"i=1;\n", +"j=1;\n", +"for i=1:2\n", +" for j=1:2\n", +" if(i==2 & j==1)\n", +" else\n", +" ip(i,j)=ilaplace(r(i,j),s,t);\n", +" j=j+1;\n", +" end\n", +" end\n", +" i=i+1;\n", +"end\n", +"r(2,1)=0\n", +"disp(ip,'state transistion matrix,ip(t)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.57: Obtain_Time_Response.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:obtain_time_response\n", +"//example 12_57\n", +"//page 586\n", +"s=%s;\n", +"syms t\n", +"A=[0 1;-2 -3]\n", +"B=[1 0]'\n", +"x0=[0 0]'\n", +"u=1/(s+1)\n", +"[r c]=size(A);//size of matrix A\n", +"p=s*eye(r,c)-A;//s*I-A where I is identity matrix\n", +"q=det(p)//determinant of sI-A\n", +"r=inv(p)//inverse of sI-A\n", +"m=r*B*(1/(s+1));\n", +"//for calculating zero state response\n", +"x=[0;0]\n", +"x(1,1)=ilaplace(m(1,1),s,t);\n", +"x(2,1)=ilaplace(m(2,1),s,t);\n", +"disp(x,'time response of the system,x(t)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.59: Obtain_Time_Response.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:obtain_time_response\n", +"//example 12_59\n", +"//page 590\n", +"s=%s;\n", +"syms t\n", +"A=[-1 0;1 -1]\n", +"B=[0 1]'\n", +"x0=[1 0]'\n", +"[r c]=size(A);//size of matrix A\n", +"p=s*eye(r,c)-A;//s*I-A where I is identity matrix\n", +"q=det(p)//determinant of sI-A\n", +"r=inv(p)//inverse of sI-A\n", +"m=r*B*(1/s)\n", +"r1=r*x0\n", +"X=r1+m\n", +"//for calculating zero state response\n", +"x=[0;0]\n", +"x(1,1)=ilaplace(X(1,1),s,t);\n", +"x(2,1)=ilaplace(X(2,1),s,t);\n", +"disp(x,'zero input response of the system,x(t)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: Transfer_Function.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:transfer_function\n", +"// example 12.5\n", +"//page 518\n", +"// we are solving this problem from signal flow graph approach\n", +"syms G1 G2 G3 G4 G5 H1 H2\n", +"// forward path denoted by P1,P2 and so on and loop by L1,L2 and so on \n", +"//path factor by D1,D2 and so on and graph determinant by D\n", +"P1=G1*G4*G5;\n", +"P2=G1*G2*G3*G5;\n", +"L1=-G3*G5;\n", +"L2=-G3*G5*H2;\n", +"L3=-G1*G4*G5*H1;\n", +"L4=-G1*G2*G3*G5*H1;\n", +"D1=1;\n", +"D2=1;\n", +"D=1-(L1+L2+L3+L4);\n", +"Y=(P1*D1+P2*D2)/D;\n", +"Y=simple(Y);\n", +"disp(Y,'C(s)/R(s)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.61: Obtain_Transfer_Matrix.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//caption:obtain_transfer_matrix\n", +"//example 12_61\n", +"//page 592\n", +"s=%s;\n", +"syms t\n", +"A=[-1 -1;3 -5]\n", +"B=[1 1]'\n", +"C=[1 2]\n", +"[r c]=size(A);//size of matrix A\n", +"p=s*eye(r,c)-A;//s*I-A where I is identity matrix\n", +"q=det(p)//determinant of sI-A\n", +"r=inv(p)//inverse of sI-A\n", +"G=C*r*B\n", +"disp(G,'transfer_matrix=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: Determine_Peak_Time_and_Peak_Overshoot.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:determine_peak_time_and_peak_overshoot\n", +"//example 12.7\n", +"//page 520\n", +"s=%s;\n", +"syms t;\n", +"G=sym('(s+2)/(s*(s+1))')//G(s)\n", +"H=1;\n", +"CL=G/(1+G*H);\n", +"disp(CL,'C(s)/R(s)=');\n", +"//for unit step response R(s)=1/s; \n", +"d=CL*(1/s);\n", +"a=s*d;\n", +"disp(d,'C(s)=');\n", +"c=ilaplace(d,s,t);\n", +"disp(c,'c(t)=');\n", +"//for peak time we get tp=3*%pi/4\n", +"tp=3*%pi/4\n", +"Cmax=1-(exp(-tp)*cos(tp));\n", +"Css=limit(a,s,0);\n", +"disp(Css,'Css=');\n", +"Mp=((Cmax-Css)/Css)*100\n", +"Mp=float(Mp)\n", +"disp(Mp,'peak_overshoot=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: Time_Response_and_Peak_Overshoot.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:time_response_and_peak_overshoot\n", +"//example 12.8\n", +"//page 521\n", +"s=%s;\n", +"syms t;\n", +"num=sym('8*(s+1)');\n", +"den=sym('(s^2+2*s+2)');\n", +"CL=num/den;\n", +"disp(CL,'C(s)/R(s)=');\n", +"//for unit step response R(s)=1/s; \n", +"d=CL*(1/s);\n", +"disp(d,'C(s)=');\n", +"c=ilaplace(d,s,t);\n", +"disp(c,'c(t)=');\n", +"//for peak time we get tp=%pi/2\n", +"t=%pi/2\n", +"a=s*d;\n", +"a=simple(a)\n", +"Cmax=4*(1+1.414*exp(-t)*sin(t-(%pi/4)))\n", +"Css=limit(a,s,0);\n", +"disp(Css,'Css=');\n", +"Mp=((Cmax-Css)/Css)*100\n", +"Mp=float(Mp)\n", +"disp(Mp,'peak_overshoot=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.9: Determine_Peak_Overshoot.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:determine_peak_overshoot\n", +"//example 12.9\n", +"//page 523\n", +"s=%s;\n", +"syms t K;\n", +"CL=sym('(s+1)/(s^2+2*s+5)');\n", +"CL=K*CL;\n", +"disp(CL,'C(s)/R(s)=')\n", +"//for unit step response R(s)=1/s; \n", +"d=CL*(1/s)\n", +"Css=limit(s*d,s,0)\n", +"disp(Css,'Css=');\n", +"//since Css=0.8 (given)\n", +"K=0.8*5;\n", +"CL=eval(CL);\n", +"disp(CL,'C(s)/R(s)=');\n", +"//for unit step response R(s)=1/s; \n", +"d=CL*(1/s)\n", +"disp(d,'C(s)=');\n", +"c=ilaplace(d,s,t);\n", +"disp(c,'c(t)=');\n", +"//for peak time we get tp=0.785\n", +"t=0.785\n", +"a=s*d;\n", +"a=simple(a)\n", +"Cmax=(4/5)*(1-exp(-t)*cos(2*%pi/4)+exp(-t)*2*sin(2*%pi/4))\n", +"Css=limit(a,s,0)\n", +"disp(Css,'Css=');\n", +"Mp=((Cmax-Css)/Css)*100\n", +"Mp=float(Mp)\n", +"disp(Mp,'peak_overshoot=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |