// ELECTRICAL MACHINES // R.K.Srivastava // First Impression 2011 // CENGAGE LEARNING INDIA PVT. LTD // CHAPTER : 6 : SYNCHRONOUS MACHINES // EXAMPLE : 6.10 clear ; clc ; close ; // Clear the work space and console // GIVEN DATA m = 3; // Total Number of Phase in Alternator p = 2; // Total number of Poles of Alternator V = 11*10^3; // Operating voltage of the Alternator in Volts VA = 10*10^6; // VA rating of the Alternator in Volts-Amphere f = 50; // Operating Frequency of the alternator in Hertz pf = 0.8; // Power factor (lagging) Vf = 12*10^3; // Operating field voltage of the Alternator in Volts If = 160; // Field Current in Amphere Ra = 0.05; // Armature Resistance per phase in Ohms Xs = 1.5; // Winding leakage reactance per phase in Ohms A = 150; // The armature MMF at rated current is equivalent to Field Current in Amphere // CALCULATIONS Vt = V/sqrt(3); // Rated per phase Voltage in Volts Ia = VA/(sqrt(3)*V); // Rated Armature Current in Amphere pfa = acosd(pf); // Power factor angle in degree Er = Vt+Ia*(cosd(pfa)-%i*sind(pfa))*(Ra+%i*Xs); // Induced EMF in Volts R_a = 90 + atand(imag(Er),real(Er)); // Angle of R in Degree R = 160 * exp( %i * (R_a) * %pi/180); // (Line-line Voltage) Er = 11902.40V will get R from Air gap Characteristics A_n = A * exp( %i * (-pfa) * %pi/180); F = R - A_n; // Field Current required to produce the excitation EMF in Amphere // DISPLAY RESULTS disp("EXAMPLE : 6.10: SOLUTION :-"); printf("\n (a) Field Current required to produce the excitation EMF, F = %.2f A \n",abs(F))