// ELECTRICAL MACHINES // R.K.Srivastava // First Impression 2011 // CENGAGE LEARNING INDIA PVT. LTD // CHAPTER : 3 : TRANSFORMERS // EXAMPLE : 3.11 clear ; clc ; close ; // Clear the work space and console // GIVEN DATA S = 50; // kVA Rating of the Transformer f = 50; // Frequency in Hertz Wo = 190; // Meter Readings when HV Winding kept open in Watt Vo = 230; // Meter Readings when HV Winding kept open in Volts Io = 6.5; // Meter Readings when HV Winding kept open in Amphere R2 = 0.06; // Resistance of the LV Winding in Ohms V1 = 2300; // Voltage across the HV Side in Volts V2 = 230; // Voltage across the LV Side in Volts AC = 230; // Tranformer connected to AC mains in Volts // CALCULATIONS a = V1/V2; // Trasformation ratio of the Transformer Wc = Wo - ((Io ^ 2) * R2); // Core loss in Watts Po = Wc; // Core loss in Watts Pc = Wc; // Core loss in Watts cos_theta_o = Po/(Vo*Io); // No load power factor theta_o = acosd(cos_theta_o); // No load power factor angle in Degrees Ic = Io * cosd(theta_o); E = V1 - Io * exp(%i*(theta_o)*%pi/180); Rc = Pc/(Ic ^ 2 ); // Core loss Resistance in Ohms Im = Io * sind(theta_o); // Current through the Magnetizing branch in Amphre Xm = E/Im; // Magnetizing Reactance in Ohms Ift = (S * 10 ^ 3)/V2; // Full Load current in Amphere Ie = (Io/Ift)*100; // Percentage of the Exicting Current in Amphere // DISPLAY RESULTS disp("EXAMPLE : 3.11 : SOLUTION :-") ; printf("\n (a) Core loss , Wc = %.2f W \n ",Wc); printf("\n (b.1) No load power factor angle , theta_o = % .2f Degree \n",theta_o); printf("\n (b.2) No load power factor , cos(theta_o) = % .6f \n",cos_theta_o ); printf("\n (c.1) Curent through Core loss Component , Ic = %.4f A \n ",Ic); printf("\n (c.2) Core loss Resistance , Rc = %.2f Ohms \n ",Rc); printf("\n (d) Current through the Magnetizing Component Xm , Im = % .2f A \n",Im); printf("\n (e) Percentage of the Exicting Current = % .2f Percent \n",Ie);