// ELECTRICAL MACHINES // R.K.Srivastava // First Impression 2011 // CENGAGE LEARNING INDIA PVT. LTD // CHAPTER : 2 : FORCES IN AN ELECTROMAGNETIC SYSTEMS // EXAMPLE : 2.1 clear ; clc ; close ; // Clear the work space and console // GIVEN DATA A = 0.0001; // The Cross-sectional area of core in metre-square Mo = 4*%pi*(10)^(-7); // Permeability of air in Henre/metre Mr = 1000; // Relative permeability of core N1 = 10;N2=20;N3=10; // Number of turns I1 = 1.0;I2=0.5;I3=1.5; // Currents in Amphere d = 2.5; // Dimension of inner window in centimetre w = 1.0; // Each limb wide in centimeter // CALCULATIONS F = (N1*I1)+(N2*I2)-(N3*I3); // MMF in Amphere-turns (minus because third coil produces the flux in opposite direction to that of other to coils) L = ((d*4)+(I2*2*4))*10^-2; // Length of the Magnetic path in metre (4-is sides of the windows)(2-Going and returning of current I2) R = L/(Mr*Mo*A); // Reluctance of the Magnetic path in MKS unit of Reluctance phi = (F*10^3)/R; // Flux in milli-Weber B = phi/A; // Flux Density in Weber/metre Square H = F/L; // Magnetic Field Intensity in Amphere-turns/Metre // DISPLAY RESULTS disp("EXAMPLE : 2.1 : SOLUTION :-") ; printf("\n (a) Flux in the core, phi = %.6f mWb ,\n",phi); printf("\n (b) Flux Density in the core, B = %.2f Wb/metre square \n",B); printf("\n (c) Magnetic Field Intensity in the core, H = %.2f At/m \n",H);