diff options
Diffstat (limited to 'Working_Examples/83/CH1')
-rwxr-xr-x | Working_Examples/83/CH1/EX1.1/example_1_1.sce | 49 | ||||
-rwxr-xr-x | Working_Examples/83/CH1/EX1.1/result_example_1_1.txt | 26 | ||||
-rwxr-xr-x | Working_Examples/83/CH1/EX1.3/example_1_3.sce | 23 | ||||
-rwxr-xr-x | Working_Examples/83/CH1/EX1.3/result_example_1_3.txt | 13 | ||||
-rwxr-xr-x | Working_Examples/83/CH1/EX1.4/example_1_4.sce | 32 | ||||
-rwxr-xr-x | Working_Examples/83/CH1/EX1.4/result_example_1_4.txt | 20 | ||||
-rwxr-xr-x | Working_Examples/83/CH1/EX1.5/example_1_5.sce | 30 | ||||
-rwxr-xr-x | Working_Examples/83/CH1/EX1.5/result_example_1_5.txt | 12 |
8 files changed, 205 insertions, 0 deletions
diff --git a/Working_Examples/83/CH1/EX1.1/example_1_1.sce b/Working_Examples/83/CH1/EX1.1/example_1_1.sce new file mode 100755 index 0000000..c0c3072 --- /dev/null +++ b/Working_Examples/83/CH1/EX1.1/example_1_1.sce @@ -0,0 +1,49 @@ +//Chapter 1 +//Example 1.1 +//page 5 +clear;clc; +fl=760e3; +pf=0.8; +lsg=0.05; +csg=60; +depre=0.12; +hpw=48; +lv=32; +hv=30; +pkwhr=0.10; + +md=fl/pf; +printf('Maximum Demand= %.1f kVA \n\n',md/1000); + +//calculation for tariff (b) + +printf('Loss in switchgear=%.2f %% \n\n',lsg*100); +input_demand=md/(1-lsg); +input_demand=input_demand/1000; +cost_sw_ge=input_demand*60; +depreciation=depre*cost_sw_ge; +fixed_charges=hv*input_demand; +running_cost=input_demand*pf*hpw*52*pkwhr;//52 weeks per year +total_b=depreciation + fixed_charges + running_cost; +printf('Input Demand= %.1f kVA \n\n',input_demand); +printf('Cost of switchgear=Rs %d\n\n',cost_sw_ge); +printf('Annual charges on depreciation=Rs %d \n\n',depreciation); +printf('Annual fixed charges due to maximum demand corresponding to triff(b)=Rs %d \n\n',fixed_charges); +printf('Annual running cost due to kWh consumed=Rs %d \n\n',running_cost); +printf('Total charges/annum for tariff(b) = Rs %d\n\n',total_b) + +//calculation for tariff (a) +input_demand=md; +input_demand=input_demand/1000; +fixed_charges=lv*input_demand; +running_cost=input_demand*pf*hpw*52*pkwhr; +total_a=fixed_charges + running_cost; +printf('maximum demand corresponding to tariff(a) = %.f kVA \n\n',input_demand); +printf('Annual fixed charges=Rs %d \n\n',fixed_charges); +printf('Annual running charges for kWh consumed = Rs %d \n\n',running_cost); +printf('Total charges/annum for tariff(a) = Rs %d \n\n',total_a); +if(total_a > total_b) + printf('Therefore, tariff(b) is economical\n\n\n'); +else + printf('Therefore, tariff(a) is economical\n\n\n'); +
\ No newline at end of file diff --git a/Working_Examples/83/CH1/EX1.1/result_example_1_1.txt b/Working_Examples/83/CH1/EX1.1/result_example_1_1.txt new file mode 100755 index 0000000..ba5c666 --- /dev/null +++ b/Working_Examples/83/CH1/EX1.1/result_example_1_1.txt @@ -0,0 +1,26 @@ + +Maximum Demand= 950.0 kVA + +Loss in switchgear=5.00 % + +Input Demand= 1000.0 kVA + +Cost of switchgear=Rs 60000 + +Annual charges on depreciation=Rs 7200 + +Annual fixed charges due to maximum demand corresponding to triff(b)=Rs 30000 + +Annual running cost due to kWh consumed=Rs 199680 + +Total charges/annum for tariff(b) = Rs 236880 + +maximum demand corresponding to tariff(a) = 950 kVA + +Annual fixed charges=Rs 30400 + +Annual running charges for kWh consumed = Rs 189696 + +Total charges/annum for tariff(a) = Rs 220096 + +Therefore, tariff(a) is economical diff --git a/Working_Examples/83/CH1/EX1.3/example_1_3.sce b/Working_Examples/83/CH1/EX1.3/example_1_3.sce new file mode 100755 index 0000000..07632e5 --- /dev/null +++ b/Working_Examples/83/CH1/EX1.3/example_1_3.sce @@ -0,0 +1,23 @@ +//Chapter 1 +//Example 1.3 +//page 7 +clear;clc; +md=25; +lf=0.6; +pcf=0.5; +puf=0.72; + +avg_demand=lf*md; +installed_capacity=avg_demand/pcf; +reserve=installed_capacity-md; +daily_ener=avg_demand*24; +ener_inst_capa=installed_capacity*24; +max_energy=daily_ener/puf; + +printf('Average Demand= %.2f MW \n\n',avg_demand); +printf('Installed capacity= %.2f MW \n\n\',installed_capacity); +printf('Reserve capacity of the plant= %.2f MW \n\n',reserve); +printf('Daily energy produced= %d MWh \n\n',daily_ener); +printf('Energy corresponding to installed capacity per day= %d MWh \n\n',ener_inst_capa); +printf('Maximum energy that could be produced = %d MWh/day \n\n',max_energy); + diff --git a/Working_Examples/83/CH1/EX1.3/result_example_1_3.txt b/Working_Examples/83/CH1/EX1.3/result_example_1_3.txt new file mode 100755 index 0000000..e49091d --- /dev/null +++ b/Working_Examples/83/CH1/EX1.3/result_example_1_3.txt @@ -0,0 +1,13 @@ + +Average Demand= 15.00 MW + +Installed capacity= 30.00 MW + +Reserve capacity of the plant= 5.00 MW + +Daily energy produced= 360 MWh + +Energy corresponding to installed capacity per day= 720 MWh + +Maximum energy that could be produced = 500 MWh/day + diff --git a/Working_Examples/83/CH1/EX1.4/example_1_4.sce b/Working_Examples/83/CH1/EX1.4/example_1_4.sce new file mode 100755 index 0000000..9b05014 --- /dev/null +++ b/Working_Examples/83/CH1/EX1.4/example_1_4.sce @@ -0,0 +1,32 @@ +//Chapter 1 +//Example 1.2 +//page 6 +clear;clc; +md=20e3; +unit_1=14e3; +unit_2=10e3; +ener_1=1e8; +ener_2=7.5e6; +unit1_time=1; +unit2_time=0.45; + +annual_lf_unit1=ener_1/(unit_1*24*365); +md_unit_2=md-unit_1; +annual_lf_unit2=ener_2/(md_unit_2*24*365); +lf_unit_2=ener_2/(md_unit_2*unit2_time*24*365); +unit1_cf=annual_lf_unit1; +unit1_puf=unit1_cf; +unit2_cf=ener_2/(unit_2*24*365); +unit2_puf=unit2_cf/unit2_time; +annual_lf=(ener_1+ener_2)/(md*24*365); + + +printf('Annual load factor for Unit 1 = %.2f %% \n\n',annual_lf_unit1*100); +printf('The maximum demand on Unit 2 is %d MW \n\n',md_unit_2/1000); +printf('Annual load factor for Unit 2 = %.2f %% \n\n',annual_lf_unit2*100); +printf('Load factor of Unit 2 for the time it takes the load= %.2f %% \n\n',lf_unit_2*100); +printf('Plant capacity factor of unit 1 = %.2f %% \n\n',unit1_cf*100); +printf('Plant use factor of unit 1 = %.2f %% \n\n',unit1_puf*100); +printf('Annual plant capacity factor of unit 2 = %.2f %% \n\n',unit2_cf*100); +printf('Plant use factor of unit 2 = %.2f %% \n\n',unit2_puf*100); +printf('The annual load factor of the total plant = %.2f %% \n\n',annual_lf*100); diff --git a/Working_Examples/83/CH1/EX1.4/result_example_1_4.txt b/Working_Examples/83/CH1/EX1.4/result_example_1_4.txt new file mode 100755 index 0000000..b735190 --- /dev/null +++ b/Working_Examples/83/CH1/EX1.4/result_example_1_4.txt @@ -0,0 +1,20 @@ + + +Annual load factor for Unit 1 = 81.54 % + +The maximum demand on Unit 2 is 6 MW + +Annual load factor for Unit 2 = 14.27 % + +Load factor of Unit 2 for the time it takes the load= 31.71 % + +Plant capacity factor of unit 1 = 81.54 % + +Plant use factor of unit 1 = 81.54 % + +Annual plant capacity factor of unit 2 = 8.56 % + +Plant use factor of unit 2 = 19.03 % + +The annual load factor of the total plant = 61.36 % + diff --git a/Working_Examples/83/CH1/EX1.5/example_1_5.sce b/Working_Examples/83/CH1/EX1.5/example_1_5.sce new file mode 100755 index 0000000..5afcf5d --- /dev/null +++ b/Working_Examples/83/CH1/EX1.5/example_1_5.sce @@ -0,0 +1,30 @@ +//Chapter 1 +//Example 1.2 +//page 6 +clear;clc; + +c1_md_6pm=5; c1_d_7pm=3; c1_lf=0.2; +c2_md_11am=5; c2_d_7pm=2; c2_avg_load=1.2; +c3_md_7pm=3; c3_avg_load=1; + +md_system=c1_d_7pm + c2_d_7pm + c3_md_7pm; +sum_mds=c1_md_6pm + c2_md_11am + c3_md_7pm; +df=sum_mds/md_system; + +printf('Maximum demand of the system is %d kW at 7p.m \n',md_system); +printf('Sum of the individual maximum demands = %d kW \n',sum_mds); +printf('Diversity factor= %.3f \n\n',df); + +c1_avg_load=c1_md_6pm*c1_lf; +c2_lf=c2_avg_load/c2_md_11am; +c3_lf=c3_avg_load/c3_md_7pm; + +printf('Consumer1 -->\t Avg_load= %.2f kW \t LF= %.1f %% \n',c1_avg_load,c1_lf*100); +printf('Consumer2 -->\t Avg_load= %.2f kW \t LF= %.1f %% \n',c2_avg_load,c2_lf*100); +printf('Consumer3 -->\t Avg_load= %.2f kW \t LF= %.1f %% \n\n',c3_avg_load,c3_lf*100); + +avg_load=c1_avg_load + c2_avg_load + c3_avg_load; +lf=avg_load/md_system; + +printf('Combined average load = %.1f kW \n',avg_load); +printf('Combined load factor= %.1f %% \n\n',lf*100); diff --git a/Working_Examples/83/CH1/EX1.5/result_example_1_5.txt b/Working_Examples/83/CH1/EX1.5/result_example_1_5.txt new file mode 100755 index 0000000..b00121a --- /dev/null +++ b/Working_Examples/83/CH1/EX1.5/result_example_1_5.txt @@ -0,0 +1,12 @@ + +Maximum demand of the system is 8 kW at 7p.m +Sum of the individual maximum demands = 13 kW +Diversity factor= 1.625 + +Consumer1 --> Avg_load= 1.00 kW LF= 20.0 % +Consumer2 --> Avg_load= 1.20 kW LF= 24.0 % +Consumer3 --> Avg_load= 1.00 kW LF= 33.3 % + +Combined average load = 3.2 kW +Combined load factor= 40.0 % + |