% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rarx.R \name{rarx} \alias{rarx} \title{Estimate parameters of ARX recursively} \usage{ rarx(x, order = c(1, 1, 1), lambda = 0.95) } \arguments{ \item{x}{an object of class \code{idframe}} \item{order}{Specification of the orders: the three integer components (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and the input-output delay} \item{lambda}{Forgetting factor(Default=\code{0.95})} } \value{ A list containing the following objects \describe{ \item{theta}{Estimated parameters of the model. The \eqn{k^{th}} row contains the parameters associated with the \eqn{k^{th}} sample. Each row in \code{theta} has the following format: \cr theta[i,:]=[a1,a2,...,ana,b1,...bnb] } \item{yhat}{Predicted value of the output, according to the current model - parameters based on all past data} } } \description{ Estimates the parameters of a single-output ARX model of the specified order from data using the recursive weighted least-squares algorithm. } \examples{ Gp1 <- idpoly(c(1,-0.9,0.2),2,ioDelay=2,noiseVar = 0.1) Gp2 <- idpoly(c(1,-1.2,0.35),2.5,ioDelay=2,noiseVar = 0.1) uk = idinput(2044,'prbs',c(0,1/4)); N = length(uk); N1 = round(0.35*N); N2 = round(0.4*N); N3 = N-N1-N2; yk1 <- sim(Gp1,uk[1:N1],addNoise = T) yk2 <- sim(Gp2,uk[N1+1:N2],addNoise = T) yk3 <- sim(Gp1,uk[N1+N2+1:N3],addNoise = T) yk <- c(yk1,yk2,yk3) z <- idframe(yk,uk,1) g(theta,yhat) \%=\% rarx(z,c(2,1,2)) } \references{ Arun K. Tangirala (2015), \emph{Principles of System Identification: Theory and Practice}, CRC Press, Boca Raton. Section 25.1.3 Lennart Ljung (1999), \emph{System Identification: Theory for the User}, 2nd Edition, Prentice Hall, New York. Section 11.2 }