% Generated by roxygen2: do not edit by hand % Please edit documentation in R/estpoly.R \name{oe} \alias{oe} \title{Estimate Output-Error Models} \usage{ oe(x, order = c(1, 1, 0), init_sys = NULL, options = optimOptions()) } \arguments{ \item{x}{an object of class \code{idframe}} \item{order}{Specification of the orders: the four integer components (nb,nf,nk) are order of polynomial B + 1, order of the polynomial F, and the input-output delay respectively} \item{init_sys}{Linear polynomial model that configures the initial parameterization. Must be an OE model. Overrules the \code{order} argument} \item{options}{Estimation Options, setup using \code{\link{optimOptions}}} } \value{ An object of class \code{estpoly} containing the following elements: \item{sys}{an \code{idpoly} object containing the fitted OE coefficients} \item{fitted.values}{the predicted response} \item{residuals}{the residuals} \item{input}{the input data used} \item{call}{the matched call} \item{stats}{A list containing the following fields: \cr \code{vcov} - the covariance matrix of the fitted coefficients \cr \code{sigma} - the standard deviation of the innovations} \item{options}{Option set used for estimation. If no custom options were configured, this is a set of default options} \item{termination}{Termination conditions for the iterative search used for prediction error minimization: \code{WhyStop} - Reason for termination \cr \code{iter} - Number of Iterations \cr \code{iter} - Number of Function Evaluations } } \description{ Fit an output-error model of the specified order given the input-output data } \details{ SISO OE models are of the form \deqn{ y[k] + f_1 y[k-1] + \ldots + f_{nf} y[k-nf] = b_{nk} u[k-nk] + \ldots + b_{nk+nb} u[k-nk-nb] + f_{1} e[k-1] + \ldots f_{nf} e[k-nf] + e[k] } The function estimates the coefficients using non-linear least squares (Levenberg-Marquardt Algorithm) \cr The data is expected to have no offsets or trends. They can be removed using the \code{\link{detrend}} function. } \examples{ data(oesim) z <- dataSlice(oesim,end=1533) # training set mod_oe <- oe(z,c(2,1,2)) mod_oe plot(mod_oe) # plot the predicted and actual responses } \references{ Arun K. Tangirala (2015), \emph{Principles of System Identification: Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2, 21.6.3 }