% Generated by roxygen2: do not edit by hand % Please edit documentation in R/iv.R \name{iv4} \alias{iv4} \title{ARX model estimation using four-stage instrumental variable method} \usage{ iv4(z, order = c(0, 1, 0)) } \arguments{ \item{z}{an idframe object containing the data} \item{order}{Specification of the orders: the three integer components (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and the input-output delay} } \value{ An object of class \code{estpoly} containing the following elements: \item{sys}{an \code{idpoly} object containing the fitted ARX coefficients} \item{fitted.values}{the predicted response} \item{residuals}{the residuals} \item{input}{the input data used} \item{call}{the matched call} \item{stats}{A list containing the following fields: \cr \code{vcov} - the covariance matrix of the fitted coefficients \cr \code{sigma} - the standard deviation of the innovations\cr \code{df} - the residual degrees of freedom} } \description{ Estimates an ARX model of the specified order from input-output data using the instrument variable method. The estimation algorithm is insensitive to the color of the noise term. } \details{ Estimation is performed in 4 stages. The first stage uses the arx function. The resulting model generates the instruments for a second-stage IV estimate. The residuals obtained from this model are modeled using a sufficently high-order AR model. At the fourth stage, the input-output data is filtered through this AR model and then subjected to the IV function with the same instrument filters as in the second stage. } \examples{ mod_dgp <- idpoly(A=c(1,-0.5),B=c(0.6,-.2),C=c(1,0.6),ioDelay = 2,noiseVar = 0.1) u <- idinput(400,"prbs") y <- sim(mod_dgp,u,T) z <- idframe(y,u) mod_iv4 <- iv4(z,c(1,2,2)) } \references{ Lennart Ljung (1999), \emph{System Identification: Theory for the User}, 2nd Edition, Prentice Hall, New York. Section 15.3 } \seealso{ \code{\link{arx}}, \code{\link{iv4}} }