% Generated by roxygen2: do not edit by hand % Please edit documentation in R/iv.R \name{iv} \alias{iv} \title{ARX model estimation using instrumental variable method} \usage{ iv(z, order = c(0, 1, 0), x = NULL) } \arguments{ \item{z}{an idframe object containing the data} \item{order}{Specification of the orders: the three integer components (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and the input-output delay} \item{x}{instrument variable matrix. x must be of the same size as the output data. (Default: \code{NULL})} } \value{ An object of class \code{estpoly} containing the following elements: \item{sys}{an \code{idpoly} object containing the fitted ARX coefficients} \item{fitted.values}{the predicted response} \item{residuals}{the residuals} \item{input}{the input data used} \item{call}{the matched call} \item{stats}{A list containing the following fields: \cr \code{vcov} - the covariance matrix of the fitted coefficients \cr \code{sigma} - the standard deviation of the innovations\cr \code{df} - the residual degrees of freedom} } \description{ Estimates an ARX model of the specified order from input-output data using the instrument variable method. If arbitrary instruments are not supplied by the user, the instruments are generated using the arx routine } \examples{ data(arxsim) mod_iv <- iv(arxsim,c(2,1,1)) } \references{ Arun K. Tangirala (2015), \emph{Principles of System Identification: Theory and Practice}, CRC Press, Boca Raton. Sections 21.7.1, 21.7.2 Lennart Ljung (1999), \emph{System Identification: Theory for the User}, 2nd Edition, Prentice Hall, New York. Section 7.6 } \seealso{ \code{\link{arx}}, \code{\link{iv4}} }