% Generated by roxygen2: do not edit by hand % Please edit documentation in R/poly.R \name{idpoly} \alias{idpoly} \title{Polynomial model with identifiable parameters} \usage{ idpoly(A = 1, B = 1, C = 1, D = 1, F1 = 1, ioDelay = 0, Ts = 1, noiseVar = 1, intNoise = F, unit = c("seconds", "minutes", "hours", "days")[1]) } \arguments{ \item{A}{autoregressive coefficients} \item{B, F1}{coefficients of the numerator and denominator respectively of the deterministic model between the input and output} \item{C, D}{coefficients of the numerator and denominator respectively of the stochastic model} \item{ioDelay}{the delay in the input-output channel} \item{Ts}{sampling interval} \item{noiseVar}{variance of the white noise source (Default=\code{1})} \item{intNoise}{Logical variable indicating presence or absence of integrator in the noise channel (Default=\code{FALSE})} \item{unit}{time unit (Default=\code{"seconds"})} } \description{ Creates a polynomial model with identifiable coefficients } \details{ Discrete-time polynomials are of the form \deqn{ A(q^{-1}) y[k] = \frac{B(q^{-1})}{F1(q^{-1})} u[k] + \frac{C(q^{-1})}{D(q^{-1})} e[k] } } \examples{ # define output-error model mod_oe <- idpoly(B=c(0.6,-0.2),F1=c(1,-0.5),ioDelay = 2,Ts=0.1, noiseVar = 0.1) # define box-jenkins model with unit variance B <- c(0.6,-0.2) C <- c(1,-0.3) D <- c(1,1.5,0.7) F1 <- c(1,-0.5) mod_bj <- idpoly(1,B,C,D,F1,ioDelay=1) }