% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/estpoly.R \name{estARX} \alias{estARX} \title{Estimate ARX Models} \usage{ estARX(data, order = c(0, 1, 0)) } \arguments{ \item{data}{an object of class \code{idframe}} \item{order:}{Specification of the orders: the three integer components (na,nb,nk) are the order of polynolnomial A, order of polynomial B and the input-output delay} } \value{ An object with classes \code{estARX} and \code{estPoly}, containing the following elements: \tabular{ll}{ \code{coefficients} \tab an \code{idpoly} object containing the fitted coefficients \cr \code{vcov} \tab the covariance matrix of the fitted coefficients\cr \code{sigma} \tab the standard deviation of the innovations\cr \code{df} the residual degrees of freedom\tab \cr \code{fitted.values} \tab the predicted response \code{residuals} \tab the residuals \cr \code{call} \tab the matched call \cr \code{time} \tab the time of the data used \cr } } \description{ Fit an ARX model of the specified order given the input-output data } \details{ ARX models are of the form \\ } \examples{ data(arxsim) model <- estARX(data,c(2,1,1)) summary(model) # obtain estimates and their covariances plot(model) # plot the predicted and actual responses } \references{ Arun K. Tangirala (2015), Principles of System Identification: Theory and Practice, CRC Press, Boca Raton. Section 21.6.1 Lennart Ljung (1999) System Identification: Theory for the User, 2nd Edition, Prentice Hall, New York. Section 10.1 }