% Generated by roxygen2: do not edit by hand % Please edit documentation in R/estpoly.R \name{arx} \alias{arx} \title{Estimate ARX Models} \usage{ arx(x, order = c(0, 1, 0), lambda = 0.1) } \arguments{ \item{x}{an object of class \code{idframe}} \item{order:}{Specification of the orders: the three integer components (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and the input-output delay} } \value{ An object of class \code{estpoly} containing the following elements: \item{sys}{an \code{idpoly} object containing the fitted ARX coefficients} \item{fitted.values}{the predicted response} \item{residuals}{the residuals} \item{input}{the input data used} \item{call}{the matched call} \item{stats}{A list containing the following fields: \cr \code{vcov} - the covariance matrix of the fitted coefficients \cr \code{sigma} - the standard deviation of the innovations\cr \code{df} - the residual degrees of freedom} } \description{ Fit an ARX model of the specified order given the input-output data } \details{ SISO ARX models are of the form \deqn{ y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] + \ldots + b_{nk+nb} u[k-nk-nb] + e[k] } The function estimates the coefficients using linear least squares (with regularization). \cr The data is expected to have no offsets or trends. They can be removed using the \code{\link{detrend}} function. } \examples{ data(arxsim) model <- arx(data,c(2,1,1)) model plot(model) # plot the predicted and actual responses } \references{ Arun K. Tangirala (2015), \emph{Principles of System Identification: Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1 Lennart Ljung (1999), \emph{System Identification: Theory for the User}, 2nd Edition, Prentice Hall, New York. Section 10.1 }