#' Remove offsets and linear trends #' #' Removes offsets or trends from data #' @param x an object of class \code{idframe} #' @param type argument indicating the type of trend to be removed (Default=\code{0}) #' \itemize{ #' \item type=\code{0}: Subtracts mean value from each signal #' \item type=\code{1}: Subtracts a linear trend (least-squres fit) #' \item type=\code{trInfo} object: Subtracts a trend specified by the object #' } #' #' @return #' A list containing two objects: the detrended data and the trend information #' #' @details #' \code{R} by default doesn't allow return of multiple objects. The \code{\%=\%} #' operator and \code{g} function in this package facillitate this behaviour. See #' the examples section for more information. #' #' @examples #' data(cstr) #' datatrain <- dataSlice(cstr,end=4500) #' datatest <- dataSlice(cstr,4501) #' g(Ztrain,tr) %=% detrend(datatrain) # Remove means #' g(Ztest) %=% detrend(datatest,tr) #' #' @seealso \code{\link[stats]{lm}} #' @export detrend <- function(x,type=0){ z <- x reg <- time(x) if(class(type)=="trInfo"){ # remove custom trend if(nOutputSeries(x)!=0){ fit <- sweep(sweep(matrix(rep(reg,nOutputSeries(x)),ncol=nOutputSeries(x)), 2,type$OutputSlope,"*"),2,type$OutputOffset,"+") z$output <- x$output-fit } if(nInputSeries(x)!=0){ fit <- sweep(sweep(matrix(rep(reg,nInputSeries(x)),ncol=nInputSeries(x)), 2,type$InputSlope,"*"),2,type$InputOffset,"+") z$input <- x$input-fit } tinfo <- type } else if(type == 0){ # remove means tinfo <- trInfo() if(nOutputSeries(x)!=0){ outputData(z) <- apply(outputData(x),2,scale,T,F) tinfo$OutputOffset <- colMeans(x$output) tinfo$OutputSlope <- rep(0,nOutputSeries(x)) } if(nInputSeries(x)!=0){ inputData(z) <- apply(inputData(x),2,scale,T,F) tinfo$InputOffset <- colMeans(x$input) tinfo$InputSlope <- rep(0,nInputSeries(x)) } } else if(type==1){ formula <- X ~ reg # Function which performs linear regression across every column multilm <- function(x,formula,time){ l <- lapply(as.list(x),function(x) data.frame(X=x,reg=time)) trend <- lapply(l,function(x) lm(formula,data=x)) trend } tinfo <- trInfo() if(nOutputSeries(x)!=0){ output_trend <- multilm(outputData(x),formula,reg) outputData(z) <- ts(sapply(output_trend,resid),start=reg[1], end=tail(reg,n=1),deltat=deltat(x)) out_coefs <- sapply(output_trend,coef) tinfo$OutputOffset <- out_coefs[1,] tinfo$OutputSlope <- out_coefs[2,] } if(nInputSeries(x)!=0){ input_trend <- multilm(inputData(x),formula,reg) inputData(z) <- ts(sapply(input_trend,resid),start=reg[1], end=tail(reg,n=1),deltat=deltat(x)) in_coefs <- sapply(input_trend,coef) tinfo$InputOffset <- in_coefs[1,] tinfo$InputSlope <- in_coefs[2,] } } else{ stop("Error: Invalid trend type") } list(z,tinfo) } #' @export trInfo <- function(InputOffset=numeric(0),OutputOffset=numeric(0), InputSlope=numeric(0),OutputSlope=numeric(0)){ l <- list(InputOffset=InputOffset,OutputOffset=OutputOffset, InputSlope=InputSlope,OutputSlope=OutputSlope) class(l) <- "trInfo" l } #' Replace Missing Data by Interpolation #' #' Function for replacing missing values with interpolated ones. This is an #' extension of the \code{na.approx} function from the \code{zoo} package. #' The missing data is indicated using the value \emph{NA}. #' #' @param data an object of class \code{idframe} #' @return #' data (an idframe object) with missing data replaced. #' #' @seealso \code{\link[zoo]{na.approx}} #' #' @examples #' data(cstr_mis) #' summary(cstr_mis) # finding out the number of NAs #' cstr <- misdata(cstr_mis) #' #' @export misdata <- function(data){ if (!requireNamespace("zoo", quietly = TRUE)) { stop("Package zoo needed for this function to work. Please install it.", call. = FALSE) } f <- function(var,start,end,Ts){ time_range <- range(time(var)) start <- time_range[1];end <- time_range[2] Ts <- stats::deltat(var) var <- ts(data=var,start=start,end=end,deltat=Ts) out <- zoo::na.approx(var,na.rm=F) return(as.numeric(out)) } Z <- data outputData(Z) <- apply(outputData(data),2,f) inputData(Z) <- apply(inputData(data),2,f) Z } #' Subset or Resample idframe data #' #' \code{dataSlice} is a subsetting method for objects of class \code{idframe}. It #' extracts the subset of the object \code{data} observed between indices \code{start} #' and \code{end}. If a frequency is specified, the series is then re-sampled at the #' new frequency. #' #' @param data an object of class \code{idframe} #' @param start the start index #' @param end the end index #' @param freq fraction of the original frequency at which the series #' to be sampled. #' #' @details #' The dataSlice function extends the \code{\link[stats]{window}} #' function for idframe objects #' #' @return an idframe object #' #' @examples #' data(cstr) #' cstrsub <- dataSlice(cstr,start=200,end=400) # extract between indices 200 and 400 #' cstrTrain <- dataSlice(cstr,end=4500) # extract upto index 4500 #' cstrTest <- dataSlice(cstr,start=6501) # extract from index 6501 till the end #' cstr_new <- dataSlice(cstr,freq=0.5) # resample data at half the original frequency #' #' @seealso \code{\link[stats]{window}} #' @export dataSlice <- function(data,start=NULL,end=NULL,freq=NULL){ # check if the class is correct if(class(data)!='idframe') stop("Not an idframe data") indexWindow <- function(y,start,end,freq){ Y <- matrix(y,ncol=ncol(y)); z <- as.vector(time(y)) Y <- window(Y,start=start,end=end,frequency=freq) zw <- window(z,start=start,end=end,frequency=freq) temp <- ts(Y,start=zw[1],end=tail(zw,n=1),deltat=diff(zw)[1]) colnames(temp) <- colnames(y) temp } if(nOutputSeries(data)!=0) outputData(data) <- indexWindow(outputData(data),start,end,freq) if(nInputSeries(data)!=0) inputData(data) <- indexWindow(inputData(data),start,end,freq) return(data) }