#' Estimate Impulse Response Coefficients #' #' \code{impulseest} is used to estimate impulse response coefficients from #' the data #' #' @param x an object of class \code{idframe} #' @param M Order of the FIR Model (Default:\code{30}) #' @param K Transport delay in the estimated impulse response #' (Default:NULL) #' @param regul Parameter indicating whether regularization should be #' used. (Default:\code{FALSE}) #' @param lambda The value of the regularization parameter. Valid only if #' \code{regul=TRUE}. (Default:\code{1}) #' #' @details #' The IR Coefficients are estimated using linear least squares. Future #' Versions will provide support for multivariate data. #' #' @references #' Arun K. Tangirala (2015), \emph{Principles of System Identification: #' Theory and Practice}, CRC Press, Boca Raton. Sections 17.4.11 and 20.2 #' #' @seealso \code{\link{step}} #' #' @examples #' uk <- rnorm(1000,1) #' yk <- filter (uk,c(0.9,-0.4),method="recursive") + rnorm(1000,1) #' data <- idframe(output=data.frame(yk),input=data.frame(uk)) #' fit <- impulseest(data) #' plot(fit) #' #' @export impulseest <- function(x,M=30,K=NULL,regul=F,lambda=1){ N <- dim(x$output)[1] if(is.null(K)) K <- rep(0,nInputSeries(x)*nOutputSeries(x)) out <- rep(list(0),length(K)) for(i in seq(nOutputSeries(x))){ for(j in seq(nInputSeries(x))){ index <- (i-1)*nInputSeries(x)+j out[[index]] <- impulsechannel(outputData(x)[,i,drop=F], inputData(x)[,j,drop=F],N,M, K[index],regul,lambda) } } out$ninputs <- nInputSeries(x) out$noutputs <- nOutputSeries(x) class(out) <- "impulseest" return(out) } impulsechannel <- function(y,u,N,M,K=0,regul=F,lambda=1){ ind <- (M+K+1):N z_reg <- function(i) u[(i-K):(i-M-K),] Z <- t(sapply(ind,z_reg)) Y <- y[ind,] # Dealing with Regularization if(regul==F){ # Fit Linear Model and find standard errors fit <- lm(Y~Z-1) coefficients <- coef(fit); residuals <- resid(fit) } else{ inner <- t(Z)%*%Z + lambda*diag(dim(Z)[2]) pinv <- solve(inner)%*% t(Z) coefficients <- pinv%*%Y residuals <- Y - Z%*%coefficients } df <- nrow(Z)-ncol(Z);sigma2 <- sum(residuals^2)/df vcov <- sigma2 * solve(t(Z)%*%Z) se <- sqrt(diag(vcov)) out <- list(coefficients=coefficients,residuals=residuals,lags=K:(M+K), x=colnames(u),y=colnames(y),se = se) out } #' Impulse Response Plots #' #' Plots the estimated IR coefficients along with the significance limits #' at each lag. #' #' @param model an object of class \code{impulseest} #' @param sd standard deviation of the confidence region (Default: \code{2}) #' #' @seealso \code{\link{impulseest}},\code{\link{step}} #' @import ggplot2 #' #' @export plot.impulseest <- function(model,sd=2){ loadNamespace("ggplot2") plotseq <- seq(model$noutputs*model$ninputs) g <- vector("list",model$nin*model$nout) for(i in plotseq){ z <- model[[i]] lim <- z$se*sd yindex <- (i-1)%/%model$nin + 1;uindex <- i-model$nin*(yindex-1) df <- data.frame(x=z$lags,y=coef(z),lim=lim) g[[i]] <- ggplot(df,aes(x,y))+ geom_segment(aes(xend=x,yend=0))+geom_hline(yintercept = 0) + geom_point(size=2) + ggtitle(paste("From",z$x,"to",z$y))+ geom_line(aes(y=lim),linetype="dashed",colour="steelblue") + geom_line(aes(y=-lim),linetype="dashed",colour="steelblue") + ggplot2::theme_bw(14) + ylab(ifelse(uindex==1,"IR Coefficients","")) + xlab(ifelse(yindex==model$nout,"Lags","")) + theme(axis.title=element_text(size=12,color = "black",face = "plain"), title=element_text(size=9,color = "black",face="bold")) + scale_x_continuous(expand = c(0.01,0.01)) } multiplot(plotlist=g,layout=plotseq) } #' Step Response Plots #' #' Plots the step response of a system, given the IR model #' #' @param model an object of class \code{impulseest} #' #' @seealso \code{\link{impulseest}} #' #' @examples #' uk <- rnorm(1000,1) #' yk <- filter (uk,c(0.9,-0.4),method="recursive") + rnorm(1000,1) #' data <- idframe(output=data.frame(yk),input=data.frame(uk)) #' fit <- impulseest(data) #' step(fit) #' #' @import ggplot2 #' @export step <- function(model){ plotseq <- seq(model$noutputs*model$ninputs) g <- vector("list",model$nin*model$nout) for(i in plotseq){ z <- model[[i]] stepResp <- cumsum(coef(z)) yindex <- (i-1)%/%model$nin + 1;uindex <- i-model$nin*(yindex-1) df <- data.frame(x=z$lags,y=stepResp) g[[i]] <- ggplot(df,aes(x,y))+ geom_step() + ggtitle(paste("From",z$x,"to",z$y)) + theme_bw(14) + ylab(ifelse(uindex==1,"Step Response","")) + xlab(ifelse(yindex==model$nout,"Lags","")) + theme(axis.title=element_text(size=12,color = "black",face = "plain"), title=element_text(size=9,,color = "black",face="bold")) } multiplot(plotlist=g,layout=plotseq) } #' Estimate frequency response #' #' Estimates frequency response and noise spectrum from data with #' fixed resolution using spectral analysis #' #' @param x an \code{idframe} object #' @param winsize lag size of the Hanning window (Default: \code{min #' (length(x)/10,30)}) #' @param freq frequency points at which the response is evaluated #' (Default: \code{seq(1,128)/128*pi/Ts}) #' #' @return #' an \code{idfrd} object containing the estimated frequency response #' and the noise spectrum #' #' @references #' Arun K. Tangirala (2015), \emph{Principles of System Identification: #' Theory and Practice}, CRC Press, Boca Raton. Sections 16.5 and 20.4 #' #' @examples #' data(arxsim) #' frf <- spa(arxsim) #' #' @import signal #' @export spa <- function(x,winsize=NULL,freq=NULL){ N <- dim(x$out)[1] nout <- nOutputSeries(x); nin <- nInputSeries(x) if(is.null(winsize)) winsize <- min(N/10,30) if(is.null(freq)) freq <- (1:128)/128*pi/deltat(x) M <- winsize Ryu <- mult_ccf(x$out,x$input,lag.max = M) Ruu <- mult_ccf(x$input,x$input,lag.max=M) Ryy <- mult_ccf(x$out,x$out,lag.max = M) cov2spec <- function(omega,R,M){ seq1 <- exp(-1i*(-M:M)*omega) sum(R*signal::hanning(2*M+1)*seq1) } G <- array(0,c(nout,nin,length(freq))) spec <- array(0,c(nout,1,length(freq))) for(i in 1:nout){ phi_y <- sapply(freq,cov2spec,Ryy[i,i,],M) temp <- phi_y for(j in 1:nin){ phi_yu <- sapply(freq,cov2spec,Ryu[i,j,],M) phi_u <- sapply(freq,cov2spec,Ruu[j,j,],M) G[i,j,] <- phi_yu/phi_u temp <- temp - phi_yu*Conj(phi_yu)/phi_u } spec[i,1,] <- temp } out <- idfrd(G,matrix(freq),deltat(x),spec) return(out) } mult_ccf <- function(X,Y=NULL,lag.max=30){ N <- dim(X)[1]; nx <- dim(X)[2] ny <- ifelse(is.null(Y),nx,dim(Y)[2]) ccvfij <- function(i,j,lag=30) ccf(X[,i],Y[,j],plot=F,lag=lag, type="covariance") Xindex <- matrix(sapply(1:nx,rep,nx),ncol=1)[,1] temp <- mapply(ccvfij,i=Xindex,j=rep(1:ny,ny), MoreArgs = list(lag=lag.max)) ccfextract <- function(i,l) l[,i]$acf temp2 <- t(sapply(1:(nx*ny),ccfextract,l=temp)) dim(temp2) <- c(nx,ny,2*lag.max+1) return(temp2) } #' Estimate empirical transfer function #' #' Estimates the emperical transfer function from the data by taking the #' ratio of the fourier transforms of the output and the input variables #' #' @param data an object of class \code{idframe} #' @param n frequency spacing (Default: \code{128}) #' #' @return #' an \code{idfrd} object containing the estimated frequency response #' #' @references #' Arun K. Tangirala (2015), \emph{Principles of System Identification: #' Theory and Practice}, CRC Press, Boca Raton. Sections 5.3 and 20.4.2 #' #' @seealso \code{\link[stats]{fft}} #' #' @examples #' data(arxsim) #' frf <- etfe(arxsim) #' #' @export etfe <- function(data,n=128){ y <- data$output u <- data$input N <- dim(data$output)[1] if(N < n){ n=N } v=seq(1,N,length.out = n) temp <- cbind(data$output[v,],data$input[v,]) tempfft <- mvfft(temp)/dim(temp)[1] G <- comdiv(tempfft[,1],tempfft[,2]) resp = G[1:ceiling(length(G)/2)] frequency <- matrix(seq( 1 , ceiling(n/2) ) * pi / floor(n/2) / deltat(data)) out <- idfrd(respData = resp,freq=frequency,Ts=data$Ts) return(out) } comdiv <- function(z1,z2){ mag1 <- Mod(z1);mag2 <- Mod(z2) phi1 <- Arg(z1); phi2 <- Arg(z2) complex(modulus=mag1/mag2,argument=signal::unwrap(phi1-phi2)) }