#' ARX model estimation using instrumental variable method #' #' Estimates an ARX model of the specified order from input-output data using #' the instrument variable method. If arbitrary instruments are not supplied #' by the user, the instruments are generated using the arx routine #' #' @param z an idframe object containing the data #' @param order Specification of the orders: the three integer components #' (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) #' and the input-output delay #' @param x instrument variable matrix. x must be of the same size as the output #' data. (Default: \code{NULL}) #' #' @details #' SISO ARX models are of the form #' \deqn{ #' y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] + #' \ldots + b_{nk+nb} u[k-nk-nb] + e[k] #' } #' The function estimates the coefficients using linear least squares (with #' regularization). #' \cr #' The data is expected to have no offsets or trends. They can be removed #' using the \code{\link{detrend}} function. #' #' @return #' An object of class \code{estpoly} containing the following elements: #' \item{sys}{an \code{idpoly} object containing the #' fitted ARX coefficients} #' \item{fitted.values}{the predicted response} #' \item{residuals}{the residuals} #' \item{input}{the input data used} #' \item{call}{the matched call} #' \item{stats}{A list containing the following fields: \cr #' \code{vcov} - the covariance matrix of the fitted coefficients \cr #' \code{sigma} - the standard deviation of the innovations\cr #' \code{df} - the residual degrees of freedom} #' #' #' @references #' Arun K. Tangirala (2015), \emph{Principles of System Identification: #' Theory and Practice}, CRC Press, Boca Raton. Sections 21.7.1, 21.7.2 #' #' Lennart Ljung (1999), \emph{System Identification: Theory for the User}, #' 2nd Edition, Prentice Hall, New York. Section 7.6 #' #' @examples #' data(arxsim) #' mod_iv <- iv(z,c(2,1,1)) #' #' @seealso arx #' #' @export iv <- function(z,order=c(0,1,0),x=NULL){ y <- outputData(z); u <- inputData(z); N <- dim(y)[1] na <- order[1];nb <- order[2]; nk <- order[3] if(is.null(x)){ # Initial Guess using ARX mod_arx <- arx(z,order) x <- matrix(sim(mod_arx$sys,u,sigma=0)) } ivcompute(y,u,x,na,nb,nk,n,N) } ivcompute <- function(y,u,x,na,nb,nk,n,N){ nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb padZeros <- function(x,n) c(rep(0,n),x,rep(0,n)) yout <- apply(y,2,padZeros,n=n); xout <- apply(x,2,padZeros,n=n); uout <- apply(u,2,padZeros,n=n); # Regressors reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 c(-yout[i-1:na,,drop=T],uout[v,,drop=T]) } phi <- t(sapply(n+1:(N+n),reg)) Y <- yout[n+1:(N+n),,drop=F] # Generating IVs ivx <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 c(-xout[i-1:na,,drop=T],uout[v,,drop=T]) } psi <- t(sapply(n+1:(N+n),ivx)) # Estimator lhs <- t(psi)%*%phi; lhsinv <- solve(lhs) theta <- lhsinv%*%t(psi)%*%Y # Residuals ypred <- (phi%*%theta)[1:N,,drop=F] e <- y-ypred sigma2 <- norm(e,"2")^2/df vcov <- sigma2*solve(t(phi)%*%phi) model <- idpoly(A = c(1,theta[1:na]),B = theta[na+1:nb], ioDelay = nk,Ts=deltat(z)) estpoly(sys = model, stats=list(vcov = vcov, sigma = sqrt(sigma2),df = df), fitted.values=ypred,residuals=e,call=match.call(),input=u) } #' @export iv4 <- function(z,order=c(0,1,0)){ y <- outputData(z); u <- inputData(z); N <- dim(y)[1] na <- order[1];nb <- order[2]; nk <- order[3] nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb # Steps 1-2 mod_iv1 <- iv(z,order) A <- signal::Ma(mod_iv1$sys$A) B <- signal::Ma(c(rep(0,nk),mod_iv1$sys$B)) # Step 3 (AR Modeling) w <- matrix(as.numeric(signal::filter(A,y)) - as.numeric(signal::filter(B,u))) mod_ar <- ar(w,aic = F,order=na+nb) Lhat <- signal::Ma(c(1,-mod_ar$ar)) # Step 4 G2 <- signal::Arma(as.numeric(B),as.numeric(A)) x2 <- matrix(sim(mod_iv1$sys,u,sigma=0)) Lf <- function(x,L) matrix(as.numeric(signal::filter(L,x))) filtered <- lapply(list(y,u,x2),Lf,L=Lhat) yf <- filtered[[1]]; uf<- filtered[[2]]; xf <- filtered[[3]] ivcompute(yf,uf,xf,na,nb,nk,n,N) }