#' S3 class for storing input-output data. #' #' \code{idframe} is an S3 class for storing and manipulating input-ouput data. It supports discrete time and frequency domain data. #' #' @param output dataframe/matrix/vector containing the outputs #' @param input dataframe/matrix/vector containing the inputs #' @param Ts sampling interval (Default: 1) #' @param start Time of the first observation #' @param t.end Time of the last observation Optional Argument #' @param unit Time Unit (Default: "seconds") #' #' @return an idframe object #' #' @seealso \code{\link{plot.idframe}}, the plot method for idframe objects, #' \code{\link{summary.idframe}}, the summary method for idrame objects #' #' @examples #' #' dataMatrix <- matrix(rnorm(1000),ncol=5) #' data <- idframe(output=dataMatrix[,3:5],input=dataMatrix[,1:2],Ts=1) #' #' @export idframe <- function(output=NULL,input=NULL,Ts = 1,start=0,end=NULL, unit = c("seconds","minutes","hours", "days","hours")[1]){ l <- list(output,input) l2 <- lapply(l,data.frame) n <- dim(l2[[1]]) if(!is.null(end)){ start <- end - Ts*(n-1) } l3 <- lapply(l,ts,start=start,deltat=1/Ts) # Object Constructor dat <- list(output=l3[[1]],input=l3[[1]],Ts=Ts,unit=unit) class(dat) <- "idframe" return(dat) } #' Plotting idframe objects #' #' Plotting method for objects inherting from class \code{idframe} #' #' @param object an object of class \code{idframe} #' @param par a list of arguments passed to par() before plotting. #' @param col line color, to be passed to plot.(Default=\code{"steelblue"}) #' @param ... additional arguments to be passed to the \code{tfplot} function #' #' @seealso \code{\link[tfplot]{tfplot}} #' @examples #' data(cstr) #' plot(cstr,col="blue") #' #' @export plot.idframe <- function(object,par=list(mar=c(3,4,2,2)), col="steelblue",...){ require(tfplot) if(nrow(object$output)==0){ data <- object$input } else if(nrow(object$input)==0){ data <- object$output } else{ data <- cbind(object$output,object$input) } tfplot(data,Xaxis=NULL,par=par,col=col,...) } #' @export summary.idframe <- function(object){ out_sum <- summary(object$output) in_sum <- summary(object$input) out <- list(out_sum=out_sum,in_sum=in_sum,Ts=object$Ts, unit=object$unit,nsample = dim(object$output)[1]) class(out) <- "summary.idframe" return(out) } #' @export print.summary.idframe <- function(object,...){ cat("\t\t Number of samples:");cat(object$nsample) cat("\nSampling time: ") cat(object$Ts);cat(" ");cat(object$unit) cat("\n\n") cat("Outputs \n") print(object$out_sum) cat("\n") cat("Inputs \n") print(object$in_sum) } #' S3 class for storing frequency response data #' #' @param response complex vector/matrix containing the response #' @param freq the frequencies at which the response is observed/estimated #' @param Ts sampling time of data #' #' @return an idfrd object #' #' @note #' The class can currently store only SISO Responses. Future versions will #' have support for multivariate data #' #' @seealso #' \code{\link{plot.idfrd}} for generating bode plots; \code{\link{spa}} and #' \code{\link{etfe}} for estimating the frequency response given input/output data #' #' @export idfrd <- function(response,freq,Ts){ out <- list(response=response,freq=freq,Ts=Ts) class(out) <- "idfrd" return(out) } #' Plotting idfrd objects #' #' Generates the bode plot of the given frequency response data. It uses the #' ggplot2 plotting engine #' #' @param object An object of class \code{idframe} #' #' @seealso \code{\link[ggplot2]{ggplot}} #' #' @examples #' data(frf) #' frf <- spa(data) # Estimates the frequency response from data #' plot(frf) #' #' @export plot.idfrd <- function(object){ require(ggplot2);require(reshape2);require(signal) mag <- 20*log10(Mod(object$resp)) phase <- -360/2/pi*unwrap(Arg(object$resp)) sys_df <- data.frame(Frequency = object$freq,Gain = mag,Phase = phase) melted_sys_df <- melt(sys_df, id.var = c("Frequency")) bode <- ggplot(sys_df, aes(x = Frequency)) + geom_line(colour="steelblue") + scale_x_log10() + theme_bw() + geom_vline(xintercept=max(object$freq),size=1.2) bode_gain <- bode + aes(y = Gain) bode_phase <- bode + aes(y = Phase) multiplot(bode_gain,bode_phase) } # Multiple plot function # # ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects) # - cols: Number of columns in layout # - layout: A matrix specifying the layout. If present, 'cols' is ignored. # # If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), # then plot 1 will go in the upper left, 2 will go in the upper right, and # 3 will go all the way across the bottom. # multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { library(grid) # Make a list from the ... arguments and plotlist plots <- c(list(...), plotlist) numPlots = length(plots) # If layout is NULL, then use 'cols' to determine layout if (is.null(layout)) { # Make the panel # ncol: Number of columns of plots # nrow: Number of rows needed, calculated from # of cols layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), ncol = cols, nrow = ceiling(numPlots/cols)) } if (numPlots==1) { print(plots[[1]]) } else { # Set up the page grid.newpage() pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) # Make each plot, in the correct location for (i in 1:numPlots) { # Get the i,j matrix positions of the regions that contain this subplot matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, layout.pos.col = matchidx$col)) } } }