#' Estimate ARX Models #' #' @export estARX <- function(data,order=c(0,1,0)){ y <- as.matrix(data$output) u <- as.matrix(data$input); N <- dim(y)[1] na <- order[1];nb <- order[2]; nk <- order[3] nb1 <- nb+nk; n <- max(na,nb1); df <- N - na - nb -nk padZeros <- function(x,n) c(rep(0,n),x,rep(0,n)) yout <- apply(y,2,padZeros,n=n); uout <- apply(u,2,padZeros,n=n); reg <- function(i) cbind(-yout[i-1:na,],uout[i-nk:nb1]) X <- t(sapply(n+1:(N+n),reg)) Y <- yout[n+1:(N+n),,drop=F] qx <- qr(X); coef <- qr.solve(qx,Y) sigma2 <- sum((Y-X%*%coef)^2)/df vcov <- sigma2 * chol2inv(qx$qr) model <- arx(A = c(1,coef[1:na]),B = coef[na+1:nb1],ioDelay = nk) est <- list(coefficients = model,vcov = vcov, sigma = sqrt(sigma2), df = df,fitted.values=(X%*%coef)[1:N,], residuals=(Y-X%*%coef)[1:N,],call=match.call()) class(est) <- "estARX" est } #' @export summary.estARX <- function(object) { coefs <- c(coef(object)$A[-1],coef(object$B)) se <- sqrt(diag(object$vcov)) tval <- coefs / se TAB <- cbind(Estimate = coef(object), StdErr = se, t.value = tval, p.value = 2*pt(-abs(tval), df=object$df)) TAB <- res <- list(call=object$call,coefficients=TAB) class(res) <- "summary.estARX" res }