#' @export estpoly <- function(model,fitted.values,residuals,options=NULL, call,stats,termination=NULL,datainfo){ out <- list(model=model,fitted.values=fitted.values,residuals=residuals, datainfo=datainfo,call=call,stats=stats,options=options, termination=termination) class(out) <- "estpoly" out } #' @export print.estpoly <- function(est,...){ print(summary(est),...) } #' @export summary.estpoly <- function(object) { model <- estpoly$sys if(model$type=="arx"||model$type=="armax"){ coefs <- c(model$A[-1],model$B) na <- length(model$A) - 1; nk <- model$ioDelay; nb <- length(model$B) if(model$type=="armax"){ coefs <- c(coefs,model$C[-1]) nc <- length(model$C)-1 } } else if(model$type=="oe"){ coefs <- c(model$B,model$F1[-1]) nf <- length(model$F1) - 1; nk <- model$ioDelay; nb <- length(model$B) } se <- sqrt(diag(getcov(object))) rownames(TAB) <- rep("a",nrow(TAB)) if(model$type=="arx"||model$type=="armax"){ for(i in 1:na) rownames(TAB)[i] <- paste("a",i,sep="") for(j in (na+1:nb)) { rownames(TAB)[j] <- paste("b",j-na-1+nk,sep="") } if(model$type=="armax"){ for(j in (na+nb+1:nc)) { rownames(TAB)[j] <- paste("c",j-na-nb,sep="") } } } else if(model$type=="oe"||model$type=="bj"){ for(i in 1:nb) rownames(TAB)[i] <- paste("b",i-1+nk,sep="") for(j in (nb+1:nf)) { rownames(TAB)[j] <- paste("f",j-nb,sep="") } } ek <- as.matrix(resid(object)) N <- nrow(ek); np <- nrow(TAB) mse <- t(ek)%*%ek/N fpe <- det(mse)*(1+np/N)/(1-np/N) res <- list(call=object$call,coefficients=TAB,mse = mse, fpe=fpe,df=object$df,model=model) class(res) <- "summary.estpoly" res } #' @export print.summary.estpoly <- function(object,...){ print(object$model,...) cat("Call: ");print(object$call);cat("\n\n") print(coef(object),...) cat(paste("\nMSE:",format(object$mse,digits=4), "\tFPE:",format(object$fpe,digits=4))) if(object$model$type=="arx") cat(paste("\nDoF:",object$df)) } #' @export predict.estpoly <- function(model,newdata=NULL){ if(is.null(newdata)){ return(fitted(model)) } else{ mod <- coef(model) y <- outputData(newdata); u <- inputData(newdata) if(mod$type=="arx"){ f1 <- Ma(c(rep(0,mod$ioDelay),mod$B)) f2 <- Ma(c(0,-mod$A[-1])) ypred <- filter(f1,u) + filter(f2,y) } return(ypred) } } #' @export plot.estpoly <- function(model,newdata=NULL){ require(ggplot2) if(is.null(newdata)){ ypred <- fitted(model) yact <- fitted(model) + resid(model) time <- time(model$input) titstr <- "Predictions of Model on Training Set" } else{ if(class(newdata)!="idframe") stop("Only idframe objects allowed") ypred <- predict(model,newdata) yact <- outputData(newdata)[,1] time <- time(newdata) titstr <- "Predictions of Model on Test Set" } df <- data.frame(Predicted=ypred[,1],Actual=yact[,1],Time=time) ggplot(df, aes(x = Actual,y=Predicted)) + ggtitle(titstr) + geom_abline(intercept=0,slope=1,colour="#D55E00") + geom_point() } #' @export residplot <- function(model,newdata=NULL){ if(is.null(newdata)){ e <- resid(model); u <- model$input } else{ if(class(newdata)!="idframe") stop("Only idframe objects allowed") e <- newdata$output[,1] - predict(model,newdata)[,1] u <- newdata$input } acorr <- acf(e,plot = F); ccorr <- ccf(u[,1],e,plot = F) par(mfrow=c(2,1),mar=c(3,4,3,2)) plot(acorr,main="ACF of residuals") plot(ccorr,main="CCF between the input and residuals",ylab="CCF") } #' Estimate ARX Models #' #' Fit an ARX model of the specified order given the input-output data #' #' @param x an object of class \code{idframe} #' @param order: Specification of the orders: the three integer components #' (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and #' the input-output delay #' #' @details #' SISO ARX models are of the form #' \deqn{ #' y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] + #' \ldots + b_{nk+nb} u[k-nk-nb] + e[k] #' } #' The function estimates the coefficients using linear least squares (with #' no regularization). Future versions may include regularization #' parameters as well #' \\ #' The data is expected to have no offsets or trends. They can be removed #' using the \code{\link{detrend}} function. #' #' @return #' An object of class \code{estpoly} containing the following elements: #' #' \tabular{ll}{ #' \code{coefficients} \tab an \code{idpoly} object containing the #' fitted coefficients \cr #' \code{vcov} \tab the covariance matrix of the fitted coefficients\cr #' \code{sigma} \tab the standard deviation of the innovations\cr #' \code{df} \tab the residual degrees of freedom \cr #' \code{fitted.values} \tab the predicted response \cr #' \code{residuals} \tab the residuals \cr #' \code{call} \tab the matched call \cr #' \code{time} \tab the time of the data used \cr #' \code{input} \tab the input data used #' } #' #' #' @references #' Arun K. Tangirala (2015), \emph{Principles of System Identification: #' Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1 #' #' Lennart Ljung (1999), \emph{System Identification: Theory for the User}, #' 2nd Edition, Prentice Hall, New York. Section 10.1 #' #' @examples #' data(arxsim) #' model <- arx(data,c(2,1,1)) #' summary(model) # obtain estimates and their covariances #' plot(model) # plot the predicted and actual responses #' #' @export arx <- function(x,order=c(0,1,0)){ y <- outputData(x); u <- inputData(x); N <- dim(y)[1] na <- order[1];nb <- order[2]; nk <- order[3] nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb padZeros <- function(x,n) c(rep(0,n),x,rep(0,n)) yout <- apply(y,2,padZeros,n=n); uout <- apply(u,2,padZeros,n=n); reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 c(-yout[i-1:na,,drop=T],uout[v,,drop=T]) } X <- t(sapply(n+1:(N+n),reg)) Y <- yout[n+1:(N+n),,drop=F] lambda <- 0.1 inner <- t(X)%*%X + lambda*diag(dim(X)[2]) innerinv <- solve(inner) pinv <- innerinv%*% t(X) coef <- pinv%*%Y sigma2 <- sum((Y-X%*%coef)^2)/(df+n) vcov <- sigma2 * innerinv model <- idpoly(A = c(1,coef[1:na]),B = coef[na+1:nb], ioDelay = nk,Ts=deltat(x)) estpoly(coefficients = model,vcov = vcov, sigma = sqrt(sigma2), df = df,fitted.values=(X%*%coef)[1:N,], residuals=(Y-X%*%coef)[1:N,],call=match.call(),input=u) } #' Estimate ARMAX Models #' #' Fit an ARMAX model of the specified order given the input-output data #' #' @param x an object of class \code{idframe} #' @param order: Specification of the orders: the four integer components #' (na,nb,nc,nk) are the order of polynolnomial A, order of polynomial B #' + 1, order of the polynomial C,and the input-output delay respectively #' #' @details #' SISO ARMAX models are of the form #' \deqn{ #' y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] + #' \ldots + b_{nk+nb} u[k-nk-nb] + c_{1} e[k-1] + \ldots c_{nc} e[k-nc] #' + e[k] #' } #' The function estimates the coefficients using non-linear least squares #' (Levenberg-Marquardt Algorithm) #' \\ #' The data is expected to have no offsets or trends. They can be removed #' using the \code{\link{detrend}} function. #' #' @return #' An object of class \code{estpoly} containing the following elements: #' #' \tabular{ll}{ #' \code{coefficients} \tab an \code{idpoly} object containing the #' fitted coefficients \cr #' \code{vcov} \tab the covariance matrix of the fitted coefficients\cr #' \code{sigma} \tab the standard deviation of the innovations\cr #' \code{df} \tab the residual degrees of freedom \cr #' \code{fitted.values} \tab the predicted response \cr #' \code{residuals} \tab the residuals \cr #' \code{call} \tab the matched call \cr #' \code{time} \tab the time of the data used \cr #' \code{input} \tab the input data used #' } #' #' #' @references #' Arun K. Tangirala (2015), \emph{Principles of System Identification: #' Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 21.6.2 #' #' @examples #' data(armaxsim) #' z <- dataSlice(data,end=1533) # training set #' mod_armax <- armax(z,c(1,2,1,2)) #' summary(mod_armax) # obtain estimates and their covariances #' plot(mod_armax) # plot the predicted and actual responses #' #' @export armax <- function(x,order=c(0,1,1,0)){ require(signal) y <- outputData(x); u <- inputData(x); N <- dim(y)[1] na <- order[1];nb <- order[2]; nc <- order[3]; nk <- order[4] nb1 <- nb+nk-1 ; n <- max(na,nb1,nc); df <- N - na - nb - nc if(nc<1) stop("Error: Not an ARMAX model") padZeros <- function(x,n) c(rep(0,n),x,rep(0,n)) yout <- apply(y,2,padZeros,n=n) uout <- apply(u,2,padZeros,n=n) reg <- function(i,y,u,e) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 matrix(c(-y[i-1:na,],u[v,],e[i-1:nc,])) } theta0 <- matrix(rnorm(na+nb+nc)) # current parameters l <- levbmqdt(yout,uout,order,N,obj=armaxGrad,theta0=theta0,N=N) theta <- l$theta model <- idpoly(A = c(1,theta[1:na]),B = theta[na+1:nb], C = c(1,theta[na+nb+1:nc]),ioDelay = nk,Ts=deltat(x)) estpoly(coefficients = model,vcov = l$vcov, sigma = l$sigma,df = df, fitted.values=y, residuals=l$e,call=match.call(), input=u) } #' Estimate Output-Error Models #' #' Fit an output-error model of the specified order given the input-output data #' #' @param x an object of class \code{idframe} #' @param order: Specification of the orders: the four integer components #' (nb,nf,nk) are order of polynomial B + 1, order of the polynomial F, #' and the input-output delay respectively #' #' @details #' SISO OE models are of the form #' \deqn{ #' y[k] + f_1 y[k-1] + \ldots + f_{nf} y[k-nf] = b_{nk} u[k-nk] + #' \ldots + b_{nk+nb} u[k-nk-nb] + f_{1} e[k-1] + \ldots f_{nf} e[k-nf] #' + e[k] #' } #' The function estimates the coefficients using non-linear least squares #' (Levenberg-Marquardt Algorithm) #' \\ #' The data is expected to have no offsets or trends. They can be removed #' using the \code{\link{detrend}} function. #' #' @return #' An object of class \code{estpoly} containing the following elements: #' #' \tabular{ll}{ #' \code{coefficients} \tab an \code{idpoly} object containing the #' fitted coefficients \cr #' \code{vcov} \tab the covariance matrix of the fitted coefficients\cr #' \code{sigma} \tab the standard deviation of the innovations\cr #' \code{df} \tab the residual degrees of freedom \cr #' \code{fitted.values} \tab the predicted response \cr #' \code{residuals} \tab the residuals \cr #' \code{call} \tab the matched call \cr #' \code{time} \tab the time of the data used \cr #' \code{input} \tab the input data used #' } #' #' #' @references #' Arun K. Tangirala (2015), \emph{Principles of System Identification: #' Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2, #' 21.6.3 #' #' @examples #' data(oesim) #' z <- dataSlice(data,end=1533) # training set #' mod_oe <- oe(z,c(2,1,2)) #' summary(mod_oe) # obtain estimates and their covariances #' plot(mod_oe) # plot the predicted and actual responses #' #' @export oe <- function(x,order=c(1,1,0)){ require(signal) y <- outputData(x); u <- inputData(x); N <- dim(y)[1] nb <- order[1];nf <- order[2]; nk <- order[3]; nb1 <- nb+nk-1 ; n <- max(nb1,nf); df <- N - nb - nf if(nf<1) stop("Not an OE model") leftPadZeros <- function(x,n) c(rep(0,n),x) reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 matrix(c(uout[v,],-eout[i-1:nf,])) } # Initialize Algorithm i = 0 mod_arx <- arx(x,c(nf,nb,nk)) # fitting ARX model iv <- matrix(predict(mod_arx)) e <- resid(mod_arx) theta <- c(coef(mod_arx)$B,coef(mod_arx)$A[-1]) uout <- apply(u,2,leftPadZeros,n=n) tol <- 10^(-5); sumSqRatio <- 1000; lambda <- 1 while (sumSqRatio > tol){ sumsq0 <- sum(e^2) # Compute gradient eout <- apply(iv,2,leftPadZeros,n=n) X <- t(sapply(n+1:N,reg)) filt1 <- Arma(b=1,a=c(1,theta[nb+1:nf])) grad <- apply(X,2,filter,filt=filt1) # Update Parameters H <- 1/N*(t(grad)%*%grad) + lambda*diag(nb+nf) Hinv <- solve(H) theta <- theta + 1/N*Hinv%*%t(grad)%*%e # Update IVs and residuals iv <- X%*%theta; e <- y-iv sumsq <- sum(e^2) sumSqRatio <- abs(sumsq0-sumsq)/sumsq0 # print(sumsq);print(sumSqRatio) i=i+1 } # print(sumSqRatio) sigma2 <- sum(e^2)/df vcov <- sigma2 * Hinv model <- idpoly(B = theta[1:nb],F1 = c(1,theta[nb+1:nf]), ioDelay = nk,Ts=deltat(x)) estpoly(coefficients = model,vcov = vcov, sigma = sqrt(sigma2), df = df,fitted.values=y-e, residuals=e[,],call=match.call(), input=u) }