#' @export plot.estPoly <- function(model,newdata=NULL){ require(ggplot2) require(reshape2) if(is.null(newdata)){ ypred <- fitted(model) yact <- fitted(model) + resid(model) time <- model$time } else{ if(class(newdata)!="idframe") stop("Only idframe objects allowed") ypred <- sim(coef(model),newdata$input[,1,drop=F]) yact <- newdata$output[,1,drop=F] time <- seq(from=newdata$t.start,to=newdata$t.end,by=newdata$Ts) } df <- data.frame(Predicted=ypred,Actual=yact,Time=time) meltdf <- melt(df,id="Time") ggplot(meltdf, aes(x = Time,y=value,colour=variable,group=variable)) + geom_line() + theme_bw() } #' Estimate ARX Models #' #' Fit an ARX model of the specified order given the input-output data #' #' @param data an object of class \code{idframe} #' @param order: Specification of the orders: the three integer components #' (na,nb,nk) are the order of polynolnomial A, order of polynomial B and #' the input-output delay #' #' @details #' ARX models are of the form \\ #' #' @return #' An object with classes \code{estARX} and \code{estPoly}, containing #' the following elements: #' #' \tabular{ll}{ #' \code{coefficients} \tab an \code{idpoly} object containing the #' fitted coefficients \cr #' \code{vcov} \tab the covariance matrix of the fitted coefficients\cr #' \code{sigma} \tab the standard deviation of the innovations\cr #' \code{df} the residual degrees of freedom\tab \cr #' \code{fitted.values} \tab the predicted response #' \code{residuals} \tab the residuals \cr #' \code{call} \tab the matched call \cr #' \code{time} \tab the time of the data used \cr #' } #' #' #' @references #' Arun K. Tangirala (2015), Principles of System Identification: Theory and #' Practice, CRC Press, Boca Raton. Section 21.6.1 #' #' Lennart Ljung (1999) System Identification: Theory for the User, #' 2nd Edition, Prentice Hall, New York. Section 10.1 #' #' @examples #' data(arxsim) #' model <- estARX(data,c(2,1,1)) #' summary(model) # obtain estimates and their covariances #' plot(model) # plot the predicted and actual responses #' #' @export estARX <- function(data,order=c(0,1,0)){ y <- as.matrix(data$output) u <- as.matrix(data$input); N <- dim(y)[1] na <- order[1];nb <- order[2]; nk <- order[3] nb1 <- nb+nk; n <- max(na,nb1); df <- N - na - nb -nk padZeros <- function(x,n) c(rep(0,n),x,rep(0,n)) yout <- apply(y,2,padZeros,n=n); uout <- apply(u,2,padZeros,n=n); reg <- function(i) cbind(-yout[i-1:na,],uout[i-nk:nb1]) X <- t(sapply(n+1:(N+n),reg)) Y <- yout[n+1:(N+n),,drop=F] qx <- qr(X); coef <- qr.solve(qx,Y) sigma2 <- sum((Y-X%*%coef)^2)/df vcov <- sigma2 * chol2inv(qx$qr) model <- arx(A = c(1,coef[1:na]),B = coef[na+1:nb1],ioDelay = nk) time <- seq(from=data$t.start,to=data$t.end,by=data$Ts) est <- list(coefficients = model,vcov = vcov, sigma = sqrt(sigma2), df = df,fitted.values=(X%*%coef)[1:N,], residuals=(Y-X%*%coef)[1:N,],call=match.call(), time=time) class(est) <- c("estARX","estPoly") est } #' @export predict.estARX <- function(model,newdata=NULL){ if(is.null(newdata)){ return(fitted(model)) } else{ return(sim(coef(model),newdata)) } } #' @export summary.estARX <- function(object) { coefs <- c(coef(object)$A[-1],coef(object)$B) se <- sqrt(diag(object$vcov)) tval <- coefs / se TAB <- cbind(Estimate = coefs, StdErr = se, t.value = tval, p.value = 2*pt(-abs(tval), df=object$df)) na <- length(coef(object)$A) - 1; nk <- coef(object)$ioDelay; nb <- length(coef(object)$B) - nk rownames(TAB) <- rep("a",nrow(TAB)) for(i in 1:na) rownames(TAB)[i] <- paste("a",i,sep="") for(j in (na+1):nrow(TAB)) { rownames(TAB)[j] <- paste("b",j-na-1+nk,sep="") } res <- list(call=object$call,coefficients=TAB,sigma=object$sigma, df=object$df) class(res) <- "summary.estARX" res } #' @export print.summary.estARX <- function(object){ cat("Discrete-time ARX model: A(q^{-1})y[k] = B(q^{-1})u[k] + e[k] \n") cat("Call: ");print(object$call);cat("\n\n") print(coef(object)) cat(paste("\nsigma:",format(object$sigma,digits=4))) cat(paste("\nDoF:",object$df)) }