# Implementation of the Levenberg Marquardt Algorithm levbmqdt <- function(...,obj,theta0,N,opt){ dots <- list(...) # Optimization Parameters tol <- opt$tol; maxIter <- opt$maxIter d <- opt$adv$LMinit; mu <- opt$adv$LMstep df <- N - dim(theta0)[1] # Initialize Algorithm i <- 0 l <- obj(theta=theta0,e=NULL,dots) e <- l$Y-l$X%*%theta0 sumsq0 <- sum(e^2) # parameter indicating whether to update gradient in the iteration update <- 1 # variable to count the number of times objective function is called countObj <- 0 repeat{ i=i+1 if(update ==1){ countObj <- countObj+1 # Update gradient l <- obj(theta0,e,dots) } # Update Parameters H <- t(l$grad)%*%l$grad + d*diag(dim(theta0)[1]) Hinv <- solve(H) theta <- theta0 + Hinv%*%t(l$grad)%*%e # Update residuals e <- l$Y-l$X%*%theta sumsq <- sum(e^2) sumSqRatio <- (sumsq0-sumsq)/sumsq0 # If sum square error with the updated parameters is less than the # previous one, the updated parameters become the current parameters # and the damping coefficient is reduced by a factor of mu if(sumSqRatio > 0){ d <- d/mu theta0 <- theta sumsq0 <- sumsq update <- 1 } else{ # increase damping coefficient by a factor of mu d <- d*mu update <- 0 } if((abs(sumSqRatio) < tol) || (i == maxIter)){ break } } if(abs(sumSqRatio) < tol){ WhyStop <- "Tolerance" } else{ WhyStop <- "Maximum Iteration Limit" } e <- e[1:N,] sigma2 <- sum(e^2)/df vcov <- Hinv list(params=theta,residuals=e,vcov=vcov,sigma = sqrt(sigma2), termination=list(WhyStop=WhyStop,iter=i,FcnCount = countObj)) } #' Create optimization options #' #' Specify optimization options that are to be passed to the #' numerical estimation routines #' #' @param tol Minimum ratio of the improvement to the current loss #' function. Iterations stop if this ratio goes below the tolerance #' limit (Default: \code{1e-5}) #' @param maxIter Maximum number of iterations to be performed #' @param LMinit Starting value of search-direction length #' in the Levenberg-Marquardt method. #' @param LMstep Size of the Levenberg-Marquardt step #' #' @export optimOptions <- function(tol=1e-5,maxIter=20,LMinit=100,LMstep=8){ return(list(tol=tol,maxIter= maxIter, adv= list(LMinit=LMinit, LMstep=LMstep))) } #' Parameter covariance of the identified model #' #' Obtain the parameter covariance matrix of the linear, identified #' parametric model #' #' @param sys a linear, identified parametric model #' #' @export getcov <- function(sys){ sys$stats$vcov } armaxGrad <- function(theta,e,dots){ y <- dots[[1]]; u <- dots[[2]]; order <- dots[[3]]; na <- order[1];nb <- order[2]; nc <- order[3]; nk <- order[4] nb1 <- nb+nk-1 ; n <- max(na,nb1,nc) N <- dim(y)[1]-2*n if(is.null(e)){ eout <- matrix(rep(0,N+2*n)) } else{ eout <- matrix(c(rep(0,n),e[,])) } reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 matrix(c(-y[i-1:na,],u[v,],eout[i-1:nc,])) } X <- t(sapply(n+1:(N+n),reg)) Y <- y[n+1:(N+n),,drop=F] l <- list(X=X,Y=Y) if(!is.null(e)){ filt1 <- signal::Arma(b=1,a=c(1,theta[(na+nb+1:nc)])) grad <- apply(X,2,signal::filter,filt=filt1) l$grad <- grad } return(l) } oeGrad <- function(theta,e,dots){ y <- dots[[1]]; uout <- dots[[2]]; order <- dots[[3]]; nb <- order[1];nf <- order[2]; nk <- order[3]; nb1 <- nb+nk-1 ; n <- max(nb1,nf) N <- dim(y)[1] if(is.null(e)){ iv <- dots[[4]] } else{ iv <- y-e } eout <- matrix(c(rep(0,n),iv[,])) reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 matrix(c(uout[v,],-eout[i-1:nf,])) } X <- t(sapply(n+1:N,reg)) l <- list(X=X,Y=y) if(!is.null(e)){ filt1 <- signal::Arma(b=1,a=c(1,theta[nb+1:nf,])) grad <- apply(X,2,filter,filt=filt1) l$grad <- grad } return(l) }