summaryrefslogtreecommitdiff
path: root/man/oe.Rd
diff options
context:
space:
mode:
Diffstat (limited to 'man/oe.Rd')
-rw-r--r--man/oe.Rd35
1 files changed, 18 insertions, 17 deletions
diff --git a/man/oe.Rd b/man/oe.Rd
index eee4839..42f6aec 100644
--- a/man/oe.Rd
+++ b/man/oe.Rd
@@ -1,4 +1,4 @@
-% Generated by roxygen2 (4.1.1): do not edit by hand
+% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/estpoly.R
\name{oe}
\alias{oe}
@@ -9,18 +9,18 @@ oe(x, order = c(1, 1, 0), options = optimOptions())
\arguments{
\item{x}{an object of class \code{idframe}}
-\item{options}{Estimation Options, setup using
-\code{\link{optimOptions}}}
-
-\item{order:}{Specification of the orders: the four integer components
+\item{order}{Specification of the orders: the four integer components
(nb,nf,nk) are order of polynomial B + 1, order of the polynomial F,
and the input-output delay respectively}
+
+\item{options}{Estimation Options, setup using
+\code{\link{optimOptions}}}
}
\value{
An object of class \code{estpoly} containing the following elements:
\tabular{ll}{
- \code{sys} \tab an \code{idpoly} object containing the
+ \code{sys} \tab an \code{idpoly} object containing the
fitted OE coefficients \cr
\code{fitted.values} \tab the predicted response \cr
\code{residuals} \tab the residuals \cr
@@ -31,43 +31,44 @@ An object of class \code{estpoly} containing the following elements:
\code{vcov} \tab the covariance matrix of the fitted coefficients\cr
\code{sigma} \tab the standard deviation of the innovations
} \cr
- \code{options} \tab Option set used for estimation. If no
+ \code{options} \tab Option set used for estimation. If no
custom options were configured, this is a set of default options. \cr
\code{termination} \tab Termination conditions for the iterative
search used for prediction error minimization.
\tabular{ll}{
\code{WhyStop} \tab Reason for termination \cr
\code{iter} \tab Number of Iterations \cr
- \code{iter} \tab Number of Function Evaluations
- }
+ \code{iter} \tab Number of Function Evaluations
+ }
}
}
\description{
Fit an output-error model of the specified order given the input-output data
}
\details{
-SISO OE models are of the form
+SISO OE models are of the form
\deqn{
- y[k] + f_1 y[k-1] + \ldots + f_{nf} y[k-nf] = b_{nk} u[k-nk] +
+ y[k] + f_1 y[k-1] + \ldots + f_{nf} y[k-nf] = b_{nk} u[k-nk] +
\ldots + b_{nk+nb} u[k-nk-nb] + f_{1} e[k-1] + \ldots f_{nf} e[k-nf]
- + e[k]
+ + e[k]
}
-The function estimates the coefficients using non-linear least squares
+The function estimates the coefficients using non-linear least squares
(Levenberg-Marquardt Algorithm)
\\
-The data is expected to have no offsets or trends. They can be removed
+The data is expected to have no offsets or trends. They can be removed
using the \code{\link{detrend}} function.
}
\examples{
data(oesim)
z <- dataSlice(data,end=1533) # training set
mod_oe <- oe(z,c(2,1,2),optimOptions(tol=1e-04,LMinit=0.01))
-mod_oe
+mod_oe
plot(mod_oe) # plot the predicted and actual responses
+
}
\references{
-Arun K. Tangirala (2015), \emph{Principles of System Identification:
-Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2,
+Arun K. Tangirala (2015), \emph{Principles of System Identification:
+Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2,
21.6.3
}