summaryrefslogtreecommitdiff
path: root/man/arx.Rd
diff options
context:
space:
mode:
Diffstat (limited to 'man/arx.Rd')
-rw-r--r--man/arx.Rd25
1 files changed, 13 insertions, 12 deletions
diff --git a/man/arx.Rd b/man/arx.Rd
index bae6f0b..4c15af3 100644
--- a/man/arx.Rd
+++ b/man/arx.Rd
@@ -1,4 +1,4 @@
-% Generated by roxygen2 (4.1.1): do not edit by hand
+% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/estpoly.R
\name{arx}
\alias{arx}
@@ -9,15 +9,15 @@ arx(x, order = c(0, 1, 0))
\arguments{
\item{x}{an object of class \code{idframe}}
-\item{order:}{Specification of the orders: the three integer components
-(na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and
+\item{order:}{Specification of the orders: the three integer components
+(na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and
the input-output delay}
}
\value{
An object of class \code{estpoly} containing the following elements:
\tabular{ll}{
- \code{sys} \tab an \code{idpoly} object containing the
+ \code{sys} \tab an \code{idpoly} object containing the
fitted ARX coefficients \cr
\code{fitted.values} \tab the predicted response \cr
\code{residuals} \tab the residuals \cr
@@ -27,7 +27,7 @@ An object of class \code{estpoly} containing the following elements:
\tabular{ll}{
\code{vcov} \tab the covariance matrix of the fitted coefficients\cr
\code{sigma} \tab the standard deviation of the innovations\cr
- \code{df} \tab the residual degrees of freedom
+ \code{df} \tab the residual degrees of freedom
}
}
}
@@ -35,16 +35,16 @@ An object of class \code{estpoly} containing the following elements:
Fit an ARX model of the specified order given the input-output data
}
\details{
-SISO ARX models are of the form
+SISO ARX models are of the form
\deqn{
- y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] +
- \ldots + b_{nk+nb} u[k-nk-nb] + e[k]
+ y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] +
+ \ldots + b_{nk+nb} u[k-nk-nb] + e[k]
}
The function estimates the coefficients using linear least squares (with
-no regularization). Future versions may include regularization
+no regularization). Future versions may include regularization
parameters as well
\\
-The data is expected to have no offsets or trends. They can be removed
+The data is expected to have no offsets or trends. They can be removed
using the \code{\link{detrend}} function.
}
\examples{
@@ -52,12 +52,13 @@ data(arxsim)
model <- arx(data,c(2,1,1))
model
plot(model) # plot the predicted and actual responses
+
}
\references{
-Arun K. Tangirala (2015), \emph{Principles of System Identification:
+Arun K. Tangirala (2015), \emph{Principles of System Identification:
Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1
-Lennart Ljung (1999), \emph{System Identification: Theory for the User},
+Lennart Ljung (1999), \emph{System Identification: Theory for the User},
2nd Edition, Prentice Hall, New York. Section 10.1
}