summaryrefslogtreecommitdiff
path: root/R/rarx.R
diff options
context:
space:
mode:
Diffstat (limited to 'R/rarx.R')
-rw-r--r--R/rarx.R79
1 files changed, 79 insertions, 0 deletions
diff --git a/R/rarx.R b/R/rarx.R
new file mode 100644
index 0000000..7f48888
--- /dev/null
+++ b/R/rarx.R
@@ -0,0 +1,79 @@
+#' Estimate parameters of ARX recursively
+#'
+#' Estimates the parameters of a single-output ARX model of the
+#' specified order from data using the recursive weighted least-squares
+#' algorithm.
+#'
+#' @param x an object of class \code{idframe}
+#' @param order Specification of the orders: the three integer components
+#' (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and
+#' the input-output delay
+#' @param lambda Forgetting factor(Default=\code{0.95})
+#'
+#' @return
+#' A list containing the following objects
+#' \describe{
+#' \item{theta}{Estimated parameters of the model. The \eqn{k^{th}}
+#' row contains the parameters associated with the \eqn{k^{th}}
+#' sample. Each row in \code{theta} has the following format: \cr
+#' theta[i,:]=[a1,a2,...,ana,b1,...bnb]
+#' }
+#' \item{yhat}{Predicted value of the output, according to the
+#' current model - parameters based on all past data}
+#' }
+#'
+#' @references
+#' Arun K. Tangirala (2015), \emph{Principles of System Identification:
+#' Theory and Practice}, CRC Press, Boca Raton. Section 25.1.3
+#'
+#' Lennart Ljung (1999), \emph{System Identification: Theory for the User},
+#' 2nd Edition, Prentice Hall, New York. Section 11.2
+#' @examples
+#' Gp1 <- idpoly(c(1,-0.9,0.2),2,ioDelay=2,noiseVar = 0.1)
+#' Gp2 <- idpoly(c(1,-1.2,0.35),2.5,ioDelay=2,noiseVar = 0.1)
+#' uk = idinput(2044,'prbs',c(0,1/4)); N = length(uk);
+#' N1 = round(0.35*N); N2 = round(0.4*N); N3 = N-N1-N2;
+#' yk1 <- sim(Gp1,uk[1:N1],addNoise = TRUE)
+#' yk2 <- sim(Gp2,uk[N1+1:N2],addNoise = TRUE)
+#' yk3 <- sim(Gp1,uk[N1+N2+1:N3],addNoise = TRUE)
+#' yk <- c(yk1,yk2,yk3)
+#' z <- idframe(yk,uk,1)
+#' g(theta,yhat) %=% rarx(z,c(2,1,2))
+#'
+#' @export
+rarx <- function(x,order=c(1,1,1),lambda=0.95){
+ y <- outputData(x); u <- inputData(x)
+ N <- dim(y)[1]
+ na <- order[1];nb <- order[2]; nk <- order[3]
+ nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb
+
+ yout <- apply(y,2,padZeros,n=n)
+ uout <- apply(u,2,padZeros,n=n)
+
+ uindex <- nk:nb1
+ if(na!=0) yindex <- 1:na
+
+ reg <- function(i) {
+ # regressor
+ temp <- numeric(0)
+ if(na!=0) temp <- c(temp,-yout[i-yindex,])
+ phi <- c(temp,uout[i-uindex,])
+ phi
+ }
+
+ # R0 <- reg(n+1)%*%t(reg(n+1))
+ # Plast <- solve(R0)
+ Plast <- 10^4*diag(na+nb)
+ theta <- matrix(0,N+1,na+nb)
+ yhat <- y
+
+ for(i in 1:N){
+ temp <- reg(n+i)
+ yhat[i,] <- t(temp)%*%t(theta[i,,drop=FALSE])
+ eps_i <- y[i,,drop=FALSE] - yhat[i,,drop=FALSE]
+ kappa_i <- Plast%*%temp/(lambda+t(temp)%*%Plast%*%temp)[1]
+ theta[i+1,] <- t(t(theta[i,,drop=F])+eps_i[1]*kappa_i)
+ Plast <- (diag(na+nb)-kappa_i%*%t(temp))%*%Plast/lambda
+ }
+ list(theta=theta[1+1:N,],yhat=yhat)
+} \ No newline at end of file