diff options
Diffstat (limited to 'R/rarx.R')
-rw-r--r-- | R/rarx.R | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/R/rarx.R b/R/rarx.R new file mode 100644 index 0000000..7f48888 --- /dev/null +++ b/R/rarx.R @@ -0,0 +1,79 @@ +#' Estimate parameters of ARX recursively +#' +#' Estimates the parameters of a single-output ARX model of the +#' specified order from data using the recursive weighted least-squares +#' algorithm. +#' +#' @param x an object of class \code{idframe} +#' @param order Specification of the orders: the three integer components +#' (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and +#' the input-output delay +#' @param lambda Forgetting factor(Default=\code{0.95}) +#' +#' @return +#' A list containing the following objects +#' \describe{ +#' \item{theta}{Estimated parameters of the model. The \eqn{k^{th}} +#' row contains the parameters associated with the \eqn{k^{th}} +#' sample. Each row in \code{theta} has the following format: \cr +#' theta[i,:]=[a1,a2,...,ana,b1,...bnb] +#' } +#' \item{yhat}{Predicted value of the output, according to the +#' current model - parameters based on all past data} +#' } +#' +#' @references +#' Arun K. Tangirala (2015), \emph{Principles of System Identification: +#' Theory and Practice}, CRC Press, Boca Raton. Section 25.1.3 +#' +#' Lennart Ljung (1999), \emph{System Identification: Theory for the User}, +#' 2nd Edition, Prentice Hall, New York. Section 11.2 +#' @examples +#' Gp1 <- idpoly(c(1,-0.9,0.2),2,ioDelay=2,noiseVar = 0.1) +#' Gp2 <- idpoly(c(1,-1.2,0.35),2.5,ioDelay=2,noiseVar = 0.1) +#' uk = idinput(2044,'prbs',c(0,1/4)); N = length(uk); +#' N1 = round(0.35*N); N2 = round(0.4*N); N3 = N-N1-N2; +#' yk1 <- sim(Gp1,uk[1:N1],addNoise = TRUE) +#' yk2 <- sim(Gp2,uk[N1+1:N2],addNoise = TRUE) +#' yk3 <- sim(Gp1,uk[N1+N2+1:N3],addNoise = TRUE) +#' yk <- c(yk1,yk2,yk3) +#' z <- idframe(yk,uk,1) +#' g(theta,yhat) %=% rarx(z,c(2,1,2)) +#' +#' @export +rarx <- function(x,order=c(1,1,1),lambda=0.95){ + y <- outputData(x); u <- inputData(x) + N <- dim(y)[1] + na <- order[1];nb <- order[2]; nk <- order[3] + nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb + + yout <- apply(y,2,padZeros,n=n) + uout <- apply(u,2,padZeros,n=n) + + uindex <- nk:nb1 + if(na!=0) yindex <- 1:na + + reg <- function(i) { + # regressor + temp <- numeric(0) + if(na!=0) temp <- c(temp,-yout[i-yindex,]) + phi <- c(temp,uout[i-uindex,]) + phi + } + + # R0 <- reg(n+1)%*%t(reg(n+1)) + # Plast <- solve(R0) + Plast <- 10^4*diag(na+nb) + theta <- matrix(0,N+1,na+nb) + yhat <- y + + for(i in 1:N){ + temp <- reg(n+i) + yhat[i,] <- t(temp)%*%t(theta[i,,drop=FALSE]) + eps_i <- y[i,,drop=FALSE] - yhat[i,,drop=FALSE] + kappa_i <- Plast%*%temp/(lambda+t(temp)%*%Plast%*%temp)[1] + theta[i+1,] <- t(t(theta[i,,drop=F])+eps_i[1]*kappa_i) + Plast <- (diag(na+nb)-kappa_i%*%t(temp))%*%Plast/lambda + } + list(theta=theta[1+1:N,],yhat=yhat) +}
\ No newline at end of file |