diff options
Diffstat (limited to 'R/preprocess.R')
-rw-r--r-- | R/preprocess.R | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/R/preprocess.R b/R/preprocess.R new file mode 100644 index 0000000..2c42c90 --- /dev/null +++ b/R/preprocess.R @@ -0,0 +1,107 @@ +#' Remove linear trends +#' +#' Removes the mean value or linear trends in each of the input and output matrices. +#' +#' @param data an object of class \code{idframe} +#' @param type trend type - "constant" or "linear". (Default: \code{"linear"}) +#' +#' @return +#' A list containing the following elements +#' +#' \tabular{ll}{ +#' \code{fitted.values} \tab \code{idframe} object with detrended variables \cr +#' \code{output.trend} \tab \code{list} containing trend fits for each output +#' variable \cr +#' \code{input.trend} \tab \code{list} containing trend fits for each input +#' variable +#' } +#' +#' @examples +#' data(cstr) +#' fit <- detrend(cstr) # remove linear trends +#' Zdetrend <- predict(fit) # get the detrended data +#' +#' demean <- detrend(cstr,type="constant") # remove mean values +#' Zcent <- predict(demean) # get the centered data +#' +#' @seealso \code{\link{predict.detrend}}, \code{\link[stats]{lm}} +#' @export +detrend <- function(data,type=c("constant","linear")[2]){ + + if(!(type %in% c("constant","linear"))){ + stop("Error: Invalid trend type") + } + + reg <- time(data$output[,1]) + + if(type=="linear"){ + formula <- X ~ reg + } else { + formula <- X ~ 1 + offset(0*reg) + } + + data_detrend <- data + out <- data$output;output_trend <- list() + for(i in 1:ncol(out)){ + output_trend[[i]] <- lm(formula,data=data.frame(X=out[,i],reg=reg)) + out[,i] <- fitted(output_trend[[i]]) + } + + input <- data$input;input_trend <- list() + + for(i in 1:ncol(input)){ + input_trend[[i]] <- lm(formula,data=data.frame(X=input[,i],reg=reg)) + input[,i] <- fitted(input_trend[[i]]) + } + + data_detrend$output <- data$output - out;data_detrend$input <- data$input - input + + est <- list(fitted.values=data_detrend,output.trend = output_trend, + input.trend = input_trend) + + class(est) <- "detrend" + return(est) +} + +#' Predict method for trend fits on idframe objects +#' +#' Detrended \code{idframe} object based on linear trend fit +#' +#' @param object an object of class \code{idframe} +#' @param newdata An optional idframe object in which to look for variables with +#' which to predict. If ommited, the original detrended idframe object is used +#' +#' @return an \code{idframe} object +#' +#' @examples +#' data(cstr) +#' train <- dataSlice(cstr,end=5000) # subset the first 5000 indices +#' test <- dataSlice(cstr,start=6001) # subset from index 6001 till the end +#' fit <- detrend(train) +#' Ztrain <- predict(fit) +#' Ztest <- predict(fit,test) +#' +#' @export +predict.detrend <- function(object,newdata=NULL,...){ + + if(is.null(newdata)){ + data <- fitted(object) + } else{ + data <- newdata + out <- detrend.predict(object$output.trend,data$output) + input <- detrend.predict(object$input.trend,data$input) + data$output <- data$output - out + data$input <- data$input - input + } + return(data) +} + +detrend.predict <- function(object,data){ + pred_list <- list() + for(i in 1:ncol(data)){ + pred_list[[i]] <- predict(object[[i]],newdata=data.frame(reg = time(data[,i]))) + } + pred <- data.frame(matrix(unlist(pred_list),ncol=ncol(data),byrow=T)) + colnames(pred) <- colnames(data) + return(pred) +}
\ No newline at end of file |