diff options
Diffstat (limited to 'R/estpoly.R')
-rw-r--r-- | R/estpoly.R | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/R/estpoly.R b/R/estpoly.R index 7967cc2..96add69 100644 --- a/R/estpoly.R +++ b/R/estpoly.R @@ -368,6 +368,62 @@ oe <- function(x,order=c(1,1,0),options=optimOptions()){ options = options,termination = l$termination) } +#' Estimate Box-Jenkins Models +#' +#' Fit a box-jenkins model of the specified order from input-output data +#' +#' @param z an \code{idframe} object containing the data +#' @param order Specification of the orders: the five integer components +#' (nb,nc,nd,nf,nk) are order of polynomial B + 1, order of the polynomial C, +#' order of the polynomial D, order of the polynomial F, and the +#' input-output delay respectively +#' @param options Estimation Options, setup using +#' \code{\link{optimOptions}} +#' +#' @details +#' SISO BJ models are of the form +#' \deqn{ +#' y[k] + f_1 y[k-1] + \ldots + f_{nf} y[k-nf] = b_{nk} u[k-nk] + +#' \ldots + b_{nk+nb} u[k-nk-nb] + f_{1} e[k-1] + \ldots f_{nf} e[k-nf] +#' + e[k] +#' } +#' The function estimates the coefficients using non-linear least squares +#' (Levenberg-Marquardt Algorithm) +#' \\ +#' The data is expected to have no offsets or trends. They can be removed +#' using the \code{\link{detrend}} function. +#' +#' @return +#' An object of class \code{estpoly} containing the following elements: +#' \item{sys}{an \code{idpoly} object containing the +#' fitted BJ coefficients} +#' \item{fitted.values}{the predicted response} +#' \item{residuals}{the residuals} +#' \item{input}{the input data used} +#' \item{call}{the matched call} +#' \item{stats}{A list containing the following fields: \cr +#' \code{vcov} - the covariance matrix of the fitted coefficients \cr +#' \code{sigma} - the standard deviation of the innovations} +#' \item{options}{Option set used for estimation. If no +#' custom options were configured, this is a set of default options} +#' \item{termination}{Termination conditions for the iterative +#' search used for prediction error minimization: +#' \code{WhyStop} - Reason for termination \cr +#' \code{iter} - Number of Iterations \cr +#' \code{iter} - Number of Function Evaluations } +#' +#' @references +#' Arun K. Tangirala (2015), \emph{Principles of System Identification: +#' Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2, +#' 21.6.3 +#' +#' @examples +#' data(bjsim) +#' z <- dataSlice(data,end=1500) # training set +#' mod_bj <- bj(z,c(2,1,1,1,2)) +#' mod_bj +#' residplot(mod_bj) # residual plots +#' #' @export bj <- function(z,order=c(1,1,1,1,0),init_sys=NULL, options=optimOptions()){ |