summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--NAMESPACE1
-rw-r--r--R/nonparam.R88
2 files changed, 45 insertions, 44 deletions
diff --git a/NAMESPACE b/NAMESPACE
index bea626c..0a764aa 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -67,7 +67,6 @@ import(bitops)
import(ggplot2)
import(polynom)
import(reshape2)
-import(sapa)
import(signal)
import(tframe)
importFrom(zoo,na.approx)
diff --git a/R/nonparam.R b/R/nonparam.R
index 3e9cf0b..540207a 100644
--- a/R/nonparam.R
+++ b/R/nonparam.R
@@ -152,20 +152,14 @@ step <- function(model){
#' Estimate frequency response
#'
-#' Estimates Frequency Response with fixed frequency resolution using
-#' spectral analysis
+#' Estimates frequency response and noise spectrum from data with
+#' fixed resolution using spectral analysis
#'
-#' @param data an \code{idframe} object
-#' @param npad an integer representing the total length of each time series
-#' to analyze after padding with zeros. This argument allows the user to
-#' control the spectral resolution of the SDF estimates: the normalized
-#' frequency interval is deltaf=1/npad. (Default: 255)
-#'
-#' @details
-#' The function calls the \code{SDF} function in the \code{sapa} package to
-#' compute the cross-spectral densities. The method used is \strong{Welch's
-#' Overlapped Segment Averaging} with a normalized \strong{Hanning} window.
-#' The overlap used is 50%.
+#' @param x an \code{idframe} object
+#' @param W lag size of the Hanning window (Default: \code{min
+#' (length(x)/10,30)})
+#' @param freq frequency points at which the response is evaluated
+#' (Default: \code{seq(1,128)/128*pi/Ts})
#'
#' @return
#' an \code{idfrd} object containing the estimated frequency response
@@ -174,31 +168,55 @@ step <- function(model){
#' Arun K. Tangirala (2015), \emph{Principles of System Identification:
#' Theory and Practice}, CRC Press, Boca Raton. Sections 16.5 and 20.4
#'
-#' @seealso \code{\link[sapa]{SDF}}
-#'
#' @examples
#' data(frf)
#' frf <- spa(data)
#'
#' @import signal
#' @export
-spa <- function(data,npad=255){
- temp <- cbind(data$output,data$input)
+spa <- function(x,winsize=NULL,freq=NULL){
+ N <- dim(x$out)[1]
+ nout <- nOutputSeries(x); nin <- nInputSeries(x)
- # Non-parametric Estimation of Spectral Densities -
- # WOSA and Hanning window
- gamma <- sapa::SDF(temp,method="wosa",sampling.interval =
- deltat(data),npad=npad)
- freq <- matrix(attributes(gamma)$frequency*2*pi)
- resp <- Conj(gamma[,2])/Mod(gamma[,3])
+ if(is.null(winsize)) winsize <- min(N/10,30)
+ if(is.null(freq)) freq <- (1:128)/128*pi/deltat(x)
+ M <- winsize
+ Ryu <- mult_ccf(x$out,x$input,lag.max = M)
+ Ruu <- mult_ccf(x$input,x$input,lag.max=M)
- # power-spectrum
- spec <- gamma[,2] - resp*gamma[,3]
-
- out <- idfrd(resp,freq,deltat(data),spec)
+ cov2spec <- function(omega,R,M){
+ seq1 <- exp(-1i*(-M:M)*omega)
+ sum(R*signal::hanning(2*M+1)*seq1)
+ }
+
+ G <- array(0,c(nout,nin,length(freq)))
+ for(i in 1:nout){
+ for(j in 1:nin){
+ num <- sapply(freq,cov2spec,Ryu[i,j,],M)
+ den <- sapply(freq,cov2spec,Ruu[,j,],M)
+ G[i,j,] <- num/den
+ }
+ }
+ out <- idfrd(G,matrix(freq),deltat(x))
return(out)
}
+mult_ccf <- function(X,Y=NULL,lag.max=30){
+ N <- dim(X)[1]; nx <- dim(X)[2]
+ ny <- ifelse(is.null(Y),nx,dim(Y)[2])
+
+ ccvfij <- function(i,j,lag=30) ccf(X[,i],Y[,j],plot=F,lag=lag,
+ type="covariance")
+ Xindex <- matrix(sapply(1:nx,rep,nx),ncol=1)[,1]
+ temp <- mapply(ccvfij,i=Xindex,j=rep(1:ny,ny),
+ MoreArgs = list(lag=lag.max))
+
+ ccfextract <- function(i,l) l[,i]$acf
+ temp2 <- t(sapply(1:(nx*ny),ccfextract,l=temp))
+ dim(temp2) <- c(nx,ny,2*lag.max+1)
+ return(temp2)
+}
+
#' Estimate empirical transfer function
#'
#' Estimates the emperical transfer function from the data by taking the
@@ -236,20 +254,4 @@ comdiv <- function(z1,z2){
phi1 <- Arg(z1); phi2 <- Arg(z2)
complex(modulus=mag1/mag2,argument=signal::unwrap(phi1-phi2))
-}
-
-mult_ccf <- function(X,Y=NULL,lag.max=30){
- N <- dim(X)[1]; nx <- dim(X)[2]
- ny <- ifelse(is.null(Y),nx,dim(Y)[2])
-
- ccvfij <- function(i,j,lag=30) ccf(X[,i],Y[,j],plot=F,lag=lag,
- type="covariance")
- Xindex <- matrix(sapply(1:nx,rep,nx),ncol=1)[,1]
- temp <- mapply(ccfij,i=Xindex,j=rep(1:ny,ny),
- MoreArgs = list(lag=lag.max))
-
- ccfextract <- function(i,l) l[,i]$acf
- temp2 <- t(sapply(1:(nx*ny),ccfextract,l=temp))
- dim(temp2) <- c(nx,ny,2*lag.max+1)
- return(temp2)
} \ No newline at end of file