summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--R/estpoly.R24
-rw-r--r--man/estARX.Rd22
2 files changed, 33 insertions, 13 deletions
diff --git a/R/estpoly.R b/R/estpoly.R
index 68bfb67..d87e7d6 100644
--- a/R/estpoly.R
+++ b/R/estpoly.R
@@ -29,7 +29,17 @@ plot.estPoly <- function(model,newdata=NULL){
#' the input-output delay
#'
#' @details
-#' ARX models are of the form \\
+#' SISO ARX models are of the form
+#' \deqn{
+#' y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] +
+#' \ldots + b_{nk+nb} u[k-nk-nb] + e[k]
+#' }
+#' The function estimates the coefficients using linear least squares (with
+#' no regularization). Future versions may include regularization
+#' parameters as well
+#' \\
+#' The data is expected to have no offsets or trends. They can be removed
+#' using the \code{\link{detrend}} function.
#'
#' @return
#' An object with classes \code{estARX} and \code{estPoly}, containing
@@ -40,8 +50,8 @@ plot.estPoly <- function(model,newdata=NULL){
#' fitted coefficients \cr
#' \code{vcov} \tab the covariance matrix of the fitted coefficients\cr
#' \code{sigma} \tab the standard deviation of the innovations\cr
-#' \code{df} the residual degrees of freedom\tab \cr
-#' \code{fitted.values} \tab the predicted response
+#' \code{df} \tab the residual degrees of freedom \cr
+#' \code{fitted.values} \tab the predicted response \cr
#' \code{residuals} \tab the residuals \cr
#' \code{call} \tab the matched call \cr
#' \code{time} \tab the time of the data used \cr
@@ -49,10 +59,10 @@ plot.estPoly <- function(model,newdata=NULL){
#'
#'
#' @references
-#' Arun K. Tangirala (2015), Principles of System Identification: Theory and
-#' Practice, CRC Press, Boca Raton. Section 21.6.1
+#' Arun K. Tangirala (2015), \emph{Principles of System Identification:
+#' Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1
#'
-#' Lennart Ljung (1999) System Identification: Theory for the User,
+#' Lennart Ljung (1999), \emph{System Identification: Theory for the User},
#' 2nd Edition, Prentice Hall, New York. Section 10.1
#'
#' @examples
@@ -66,7 +76,7 @@ estARX <- function(data,order=c(0,1,0)){
y <- as.matrix(data$output)
u <- as.matrix(data$input); N <- dim(y)[1]
na <- order[1];nb <- order[2]; nk <- order[3]
- nb1 <- nb+nk; n <- max(na,nb1); df <- N - na - nb -nk
+ nb1 <- nb+nk. ; n <- max(na,nb1); df <- N - na - nb -nk
padZeros <- function(x,n) c(rep(0,n),x,rep(0,n))
yout <- apply(y,2,padZeros,n=n);
diff --git a/man/estARX.Rd b/man/estARX.Rd
index d4ff9b6..11858f8 100644
--- a/man/estARX.Rd
+++ b/man/estARX.Rd
@@ -22,8 +22,8 @@ the following elements:
fitted coefficients \cr
\code{vcov} \tab the covariance matrix of the fitted coefficients\cr
\code{sigma} \tab the standard deviation of the innovations\cr
- \code{df} the residual degrees of freedom\tab \cr
- \code{fitted.values} \tab the predicted response
+ \code{df} \tab the residual degrees of freedom \cr
+ \code{fitted.values} \tab the predicted response \cr
\code{residuals} \tab the residuals \cr
\code{call} \tab the matched call \cr
\code{time} \tab the time of the data used \cr
@@ -33,7 +33,17 @@ the following elements:
Fit an ARX model of the specified order given the input-output data
}
\details{
-ARX models are of the form \\
+SISO ARX models are of the form
+\deqn{
+ y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] +
+ \ldots + b_{nk+nb} u[k-nk-nb] + e[k]
+}
+The function estimates the coefficients using linear least squares (with
+no regularization). Future versions may include regularization
+parameters as well
+\\
+The data is expected to have no offsets or trends. They can be removed
+using the \code{\link{detrend}} function.
}
\examples{
data(arxsim)
@@ -42,10 +52,10 @@ summary(model) # obtain estimates and their covariances
plot(model) # plot the predicted and actual responses
}
\references{
-Arun K. Tangirala (2015), Principles of System Identification: Theory and
-Practice, CRC Press, Boca Raton. Section 21.6.1
+Arun K. Tangirala (2015), \emph{Principles of System Identification:
+Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1
-Lennart Ljung (1999) System Identification: Theory for the User,
+Lennart Ljung (1999), \emph{System Identification: Theory for the User},
2nd Edition, Prentice Hall, New York. Section 10.1
}