summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--R/detrend.R38
-rw-r--r--man/detrend.idframe.Rd32
-rw-r--r--man/predict.detrend.idframe.Rd31
3 files changed, 90 insertions, 11 deletions
diff --git a/R/detrend.R b/R/detrend.R
index 8fde614..45cdbbe 100644
--- a/R/detrend.R
+++ b/R/detrend.R
@@ -4,21 +4,21 @@
#'
#' @param data an object of class \code{idframe}
#'
+#' @return
+#' A list containing the following elements
+#'
+#' \tabular{ll}{
+#' \code{fitted.values} \tab \code{idframe} object with detrended variables
+#' \code{output.trend} \tab \code{list} containing trend fits for each output variable \cr
+#' \code{input.trend} \tab \code{list} containing trend fits for each input variable
+#' }
+#'
#' @examples
#' data(cstr)
#' fit <- detrend(cstr)
-#' cstr_detrend <- predict(fit)
-#'
-#' ## Examples for train and test sets
-#' data(cstr)
-#' splitList <- dataPartition(cstr,p=0.6)
-#' train <- splitList$estimation # training set
-#' test <- splitList$validation # testing set
-#' fit <- detrend(trend)
-#' train_detrend <- predict(fit)
-#' test_detrend <- predict(fit,newdata=test)
+#' cstr_detrend <- predict(fit)
#'
-#' @seealso \code{\link[stats]{lm}}
+#' @seealso \code{\link{predict.detrend.idframe}}, \code{\link[stats]{lm}}
#' @export
detrend.idframe <- function(data){
@@ -41,7 +41,23 @@ detrend.idframe <- function(data){
#' Predict method for trend fits on idframe objects
#'
+#' Detrended \code{idframe} object based on linear trend fit
#'
+#' @param object an object of class \code{idframe}
+#' @param newdata An optional idframe object in whic to look for variables with which
+#' to predict. If ommited, the original detrended idframe object is used
+#'
+#' @return an \code{idframe} object
+#'
+#' @examples
+#' ## Examples for train and test sets
+#' data(cstr)
+#' splitList <- dataPartition(cstr,p=0.6)
+#' train <- splitList$estimation # training set
+#' test <- splitList$validation # testing set
+#' fit <- detrend(trend)
+#' train_detrend <- predict(fit)
+#' test_detrend <- predict(fit,newdata=test)
#' @export
predict.detrend.idframe <- function(object,newdata=NULL,...){
diff --git a/man/detrend.idframe.Rd b/man/detrend.idframe.Rd
new file mode 100644
index 0000000..9461363
--- /dev/null
+++ b/man/detrend.idframe.Rd
@@ -0,0 +1,32 @@
+% Generated by roxygen2 (4.1.0): do not edit by hand
+% Please edit documentation in R/detrend.R
+\name{detrend.idframe}
+\alias{detrend.idframe}
+\title{Remove linear trends}
+\usage{
+detrend.idframe(data)
+}
+\arguments{
+\item{data}{an object of class \code{idframe}}
+}
+\value{
+A list containing the following elements
+
+\tabular{ll}{
+ \code{fitted.values} \tab \code{idframe} object with detrended variables
+ \code{output.trend} \tab \code{list} containing trend fits for each output variable \cr
+ \code{input.trend} \tab \code{list} containing trend fits for each input variable
+ }
+}
+\description{
+Removes the linear function from the input and output matrices.
+}
+\examples{
+data(cstr)
+fit <- detrend(cstr)
+cstr_detrend <- predict(fit)
+}
+\seealso{
+\code{\link{predict.detrend.idframe}}, \code{\link[stats]{lm}}
+}
+
diff --git a/man/predict.detrend.idframe.Rd b/man/predict.detrend.idframe.Rd
new file mode 100644
index 0000000..933a907
--- /dev/null
+++ b/man/predict.detrend.idframe.Rd
@@ -0,0 +1,31 @@
+% Generated by roxygen2 (4.1.0): do not edit by hand
+% Please edit documentation in R/detrend.R
+\name{predict.detrend.idframe}
+\alias{predict.detrend.idframe}
+\title{Predict method for trend fits on idframe objects}
+\usage{
+\method{predict}{detrend.idframe}(object, newdata = NULL, ...)
+}
+\arguments{
+\item{object}{an object of class \code{idframe}}
+
+\item{newdata}{An optional idframe object in whic to look for variables with which
+to predict. If ommited, the original detrended idframe object is used}
+}
+\value{
+an \code{idframe} object
+}
+\description{
+Detrended \code{idframe} object based on linear trend fit
+}
+\examples{
+## Examples for train and test sets
+data(cstr)
+splitList <- dataPartition(cstr,p=0.6)
+train <- splitList$estimation # training set
+test <- splitList$validation # testing set
+fit <- detrend(trend)
+train_detrend <- predict(fit)
+test_detrend <- predict(fit,newdata=test)
+}
+