diff options
-rw-r--r-- | R/preprocess.R | 35 |
1 files changed, 17 insertions, 18 deletions
diff --git a/R/preprocess.R b/R/preprocess.R index 27180c3..f119d98 100644 --- a/R/preprocess.R +++ b/R/preprocess.R @@ -90,28 +90,27 @@ detrend <- function(x,type=c("constant","linear")[1]){ #' Ztest <- predict(fit,test) #' #' @export -predict.detrend <- function(object,newdata=NULL,...){ +predict.detrend <- function(model,newdata=NULL,...){ if(is.null(newdata)){ - data <- fitted(object) + x <- fitted(model) } else{ - data <- newdata - out <- detrend.predict(object$output.trend,outputData(data)) - input <- detrend.predict(object$input.trend,inputData(data)) - outputData(data) <- outputData(data) - out - inputData(data) <- inputData(data) - input + x <- newdata; reg <- time(x) + + # checking if the original data has outputs + if(!is.null(model$output_trend)){ + y <- ts(sapply(output_trend,predict,newdata=data.frame(reg=reg)), + start=reg[1],end=tail(reg,n=1),deltat = deltat(x)) + outputData(x) <- outputData(x) - y + } + + if(!is.null(model$input_trend)){ + y <- ts(sapply(in_trend,predict,newdata=data.frame(reg=reg)), + start=reg[1],end=tail(reg,n=1),deltat = deltat(x)) + inputData(x) <- inputData(x) - y + } } - return(data) -} - -detrend.predict <- function(object,data){ - pred_list <- list() - for(i in 1:ncol(data)){ - pred_list[[i]] <- predict(object[[i]],newdata=data.frame(reg = time(data))) - } - pred <- data.frame(matrix(unlist(pred_list),ncol=ncol(data),byrow=T)) - colnames(pred) <- colnames(data) - return(pred) + return(x) } #' Replace Missing Data by Interpolation |