1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
$ DN1, DN2, TAU, TTYPE )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER I0, N0, N0IN, PP, TTYPE
DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, TAU
* ..
* .. Array Arguments ..
DOUBLE PRECISION Z( * )
* ..
*
* Purpose
* =======
*
* DLASQ4 computes an approximation TAU to the smallest eigenvalue
* using values of d from the previous transform.
*
* I0 (input) INTEGER
* First index.
*
* N0 (input) INTEGER
* Last index.
*
* Z (input) DOUBLE PRECISION array, dimension ( 4*N )
* Z holds the qd array.
*
* PP (input) INTEGER
* PP=0 for ping, PP=1 for pong.
*
* N0IN (input) INTEGER
* The value of N0 at start of EIGTEST.
*
* DMIN (input) DOUBLE PRECISION
* Minimum value of d.
*
* DMIN1 (input) DOUBLE PRECISION
* Minimum value of d, excluding D( N0 ).
*
* DMIN2 (input) DOUBLE PRECISION
* Minimum value of d, excluding D( N0 ) and D( N0-1 ).
*
* DN (input) DOUBLE PRECISION
* d(N)
*
* DN1 (input) DOUBLE PRECISION
* d(N-1)
*
* DN2 (input) DOUBLE PRECISION
* d(N-2)
*
* TAU (output) DOUBLE PRECISION
* This is the shift.
*
* TTYPE (output) INTEGER
* Shift type.
*
* Further Details
* ===============
* CNST1 = 9/16
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION CNST1, CNST2, CNST3
PARAMETER ( CNST1 = 0.5630D0, CNST2 = 1.010D0,
$ CNST3 = 1.050D0 )
DOUBLE PRECISION QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD
PARAMETER ( QURTR = 0.250D0, THIRD = 0.3330D0,
$ HALF = 0.50D0, ZERO = 0.0D0, ONE = 1.0D0,
$ TWO = 2.0D0, HUNDRD = 100.0D0 )
* ..
* .. Local Scalars ..
INTEGER I4, NN, NP
DOUBLE PRECISION A2, B1, B2, G, GAM, GAP1, GAP2, S
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT
* ..
* .. Save statement ..
SAVE G
* ..
* .. Data statement ..
DATA G / ZERO /
* ..
* .. Executable Statements ..
*
* A negative DMIN forces the shift to take that absolute value
* TTYPE records the type of shift.
*
IF( DMIN.LE.ZERO ) THEN
TAU = -DMIN
TTYPE = -1
RETURN
END IF
*
NN = 4*N0 + PP
IF( N0IN.EQ.N0 ) THEN
*
* No eigenvalues deflated.
*
IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN
*
B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) )
B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) )
A2 = Z( NN-7 ) + Z( NN-5 )
*
* Cases 2 and 3.
*
IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN
GAP2 = DMIN2 - A2 - DMIN2*QURTR
IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN
GAP1 = A2 - DN - ( B2 / GAP2 )*B2
ELSE
GAP1 = A2 - DN - ( B1+B2 )
END IF
IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN
S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN )
TTYPE = -2
ELSE
S = ZERO
IF( DN.GT.B1 )
$ S = DN - B1
IF( A2.GT.( B1+B2 ) )
$ S = MIN( S, A2-( B1+B2 ) )
S = MAX( S, THIRD*DMIN )
TTYPE = -3
END IF
ELSE
*
* Case 4.
*
TTYPE = -4
S = QURTR*DMIN
IF( DMIN.EQ.DN ) THEN
GAM = DN
A2 = ZERO
IF( Z( NN-5 ) .GT. Z( NN-7 ) )
$ RETURN
B2 = Z( NN-5 ) / Z( NN-7 )
NP = NN - 9
ELSE
NP = NN - 2*PP
B2 = Z( NP-2 )
GAM = DN1
IF( Z( NP-4 ) .GT. Z( NP-2 ) )
$ RETURN
A2 = Z( NP-4 ) / Z( NP-2 )
IF( Z( NN-9 ) .GT. Z( NN-11 ) )
$ RETURN
B2 = Z( NN-9 ) / Z( NN-11 )
NP = NN - 13
END IF
*
* Approximate contribution to norm squared from I < NN-1.
*
A2 = A2 + B2
DO 10 I4 = NP, 4*I0 - 1 + PP, -4
IF( B2.EQ.ZERO )
$ GO TO 20
B1 = B2
IF( Z( I4 ) .GT. Z( I4-2 ) )
$ RETURN
B2 = B2*( Z( I4 ) / Z( I4-2 ) )
A2 = A2 + B2
IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
$ GO TO 20
10 CONTINUE
20 CONTINUE
A2 = CNST3*A2
*
* Rayleigh quotient residual bound.
*
IF( A2.LT.CNST1 )
$ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
END IF
ELSE IF( DMIN.EQ.DN2 ) THEN
*
* Case 5.
*
TTYPE = -5
S = QURTR*DMIN
*
* Compute contribution to norm squared from I > NN-2.
*
NP = NN - 2*PP
B1 = Z( NP-2 )
B2 = Z( NP-6 )
GAM = DN2
IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 )
$ RETURN
A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )
*
* Approximate contribution to norm squared from I < NN-2.
*
IF( N0-I0.GT.2 ) THEN
B2 = Z( NN-13 ) / Z( NN-15 )
A2 = A2 + B2
DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4
IF( B2.EQ.ZERO )
$ GO TO 40
B1 = B2
IF( Z( I4 ) .GT. Z( I4-2 ) )
$ RETURN
B2 = B2*( Z( I4 ) / Z( I4-2 ) )
A2 = A2 + B2
IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
$ GO TO 40
30 CONTINUE
40 CONTINUE
A2 = CNST3*A2
END IF
*
IF( A2.LT.CNST1 )
$ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
ELSE
*
* Case 6, no information to guide us.
*
IF( TTYPE.EQ.-6 ) THEN
G = G + THIRD*( ONE-G )
ELSE IF( TTYPE.EQ.-18 ) THEN
G = QURTR*THIRD
ELSE
G = QURTR
END IF
S = G*DMIN
TTYPE = -6
END IF
*
ELSE IF( N0IN.EQ.( N0+1 ) ) THEN
*
* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
*
IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN
*
* Cases 7 and 8.
*
TTYPE = -7
S = THIRD*DMIN1
IF( Z( NN-5 ).GT.Z( NN-7 ) )
$ RETURN
B1 = Z( NN-5 ) / Z( NN-7 )
B2 = B1
IF( B2.EQ.ZERO )
$ GO TO 60
DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
A2 = B1
IF( Z( I4 ).GT.Z( I4-2 ) )
$ RETURN
B1 = B1*( Z( I4 ) / Z( I4-2 ) )
B2 = B2 + B1
IF( HUNDRD*MAX( B1, A2 ).LT.B2 )
$ GO TO 60
50 CONTINUE
60 CONTINUE
B2 = SQRT( CNST3*B2 )
A2 = DMIN1 / ( ONE+B2**2 )
GAP2 = HALF*DMIN2 - A2
IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
ELSE
S = MAX( S, A2*( ONE-CNST2*B2 ) )
TTYPE = -8
END IF
ELSE
*
* Case 9.
*
S = QURTR*DMIN1
IF( DMIN1.EQ.DN1 )
$ S = HALF*DMIN1
TTYPE = -9
END IF
*
ELSE IF( N0IN.EQ.( N0+2 ) ) THEN
*
* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
*
* Cases 10 and 11.
*
IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN
TTYPE = -10
S = THIRD*DMIN2
IF( Z( NN-5 ).GT.Z( NN-7 ) )
$ RETURN
B1 = Z( NN-5 ) / Z( NN-7 )
B2 = B1
IF( B2.EQ.ZERO )
$ GO TO 80
DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
IF( Z( I4 ).GT.Z( I4-2 ) )
$ RETURN
B1 = B1*( Z( I4 ) / Z( I4-2 ) )
B2 = B2 + B1
IF( HUNDRD*B1.LT.B2 )
$ GO TO 80
70 CONTINUE
80 CONTINUE
B2 = SQRT( CNST3*B2 )
A2 = DMIN2 / ( ONE+B2**2 )
GAP2 = Z( NN-7 ) + Z( NN-9 ) -
$ SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2
IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
ELSE
S = MAX( S, A2*( ONE-CNST2*B2 ) )
END IF
ELSE
S = QURTR*DMIN2
TTYPE = -11
END IF
ELSE IF( N0IN.GT.( N0+2 ) ) THEN
*
* Case 12, more than two eigenvalues deflated. No information.
*
S = ZERO
TTYPE = -12
END IF
*
TAU = S
RETURN
*
* End of DLASQ4
*
END
|