1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
SUBROUTINE ZHER2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
* .. Scalar Arguments ..
COMPLEX*16 ALPHA
INTEGER INCX, INCY, LDA, N
CHARACTER*1 UPLO
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* ZHER2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an n
* by n hermitian matrix.
*
* Parameters
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the array A is to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of A
* is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of A
* is to be referenced.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular part of the hermitian matrix and the strictly
* lower triangular part of A is not referenced. On exit, the
* upper triangular part of the array A is overwritten by the
* upper triangular part of the updated matrix.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular part of the hermitian matrix and the strictly
* upper triangular part of A is not referenced. On exit, the
* lower triangular part of the array A is overwritten by the
* lower triangular part of the updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, n ).
* Unchanged on exit.
*
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* .. Local Scalars ..
COMPLEX*16 TEMP1, TEMP2
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX, DBLE
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
$ .NOT.LSAME( UPLO, 'L' ) )THEN
INFO = 1
ELSE IF( N.LT.0 )THEN
INFO = 2
ELSE IF( INCX.EQ.0 )THEN
INFO = 5
ELSE IF( INCY.EQ.0 )THEN
INFO = 7
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
INFO = 9
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'ZHER2 ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
$ RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
IF( INCX.GT.0 )THEN
KX = 1
ELSE
KX = 1 - ( N - 1 )*INCX
END IF
IF( INCY.GT.0 )THEN
KY = 1
ELSE
KY = 1 - ( N - 1 )*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF( LSAME( UPLO, 'U' ) )THEN
*
* Form A when A is stored in the upper triangle.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 20, J = 1, N
IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( J ) )
TEMP2 = DCONJG( ALPHA*X( J ) )
DO 10, I = 1, J - 1
A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
10 CONTINUE
A( J, J ) = DBLE( A( J, J ) ) +
$ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
ELSE
A( J, J ) = DBLE( A( J, J ) )
END IF
20 CONTINUE
ELSE
DO 40, J = 1, N
IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( JY ) )
TEMP2 = DCONJG( ALPHA*X( JX ) )
IX = KX
IY = KY
DO 30, I = 1, J - 1
A( I, J ) = A( I, J ) + X( IX )*TEMP1
$ + Y( IY )*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
A( J, J ) = DBLE( A( J, J ) ) +
$ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 )
ELSE
A( J, J ) = DBLE( A( J, J ) )
END IF
JX = JX + INCX
JY = JY + INCY
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in the lower triangle.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 60, J = 1, N
IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( J ) )
TEMP2 = DCONJG( ALPHA*X( J ) )
A( J, J ) = DBLE( A( J, J ) ) +
$ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
DO 50, I = J + 1, N
A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
50 CONTINUE
ELSE
A( J, J ) = DBLE( A( J, J ) )
END IF
60 CONTINUE
ELSE
DO 80, J = 1, N
IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( JY ) )
TEMP2 = DCONJG( ALPHA*X( JX ) )
A( J, J ) = DBLE( A( J, J ) ) +
$ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 )
IX = JX
IY = JY
DO 70, I = J + 1, N
IX = IX + INCX
IY = IY + INCY
A( I, J ) = A( I, J ) + X( IX )*TEMP1
$ + Y( IY )*TEMP2
70 CONTINUE
ELSE
A( J, J ) = DBLE( A( J, J ) )
END IF
JX = JX + INCX
JY = JY + INCY
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZHER2 .
*
END
|