/* complex/gsl_complex_math.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Jorma Olavi T�htinen, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_COMPLEX_MATH_H__ #define __GSL_COMPLEX_MATH_H__ #include <gsl/gsl_inline.h> #include <gsl/gsl_complex.h> #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus #define __BEGIN_DECLS extern "C" { #define __END_DECLS } #else #define __BEGIN_DECLS /* empty */ #define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Complex numbers */ gsl_complex gsl_complex_polar (double r, double theta); /* r= r e^(i theta) */ INLINE_DECL gsl_complex gsl_complex_rect (double x, double y); /* r= real+i*imag */ #ifdef HAVE_INLINE INLINE_FUN gsl_complex gsl_complex_rect (double x, double y) { /* return z = x + i y */ gsl_complex z; GSL_SET_COMPLEX (&z, x, y); return z; } #endif #define GSL_COMPLEX_ONE (gsl_complex_rect(1.0,0.0)) #define GSL_COMPLEX_ZERO (gsl_complex_rect(0.0,0.0)) #define GSL_COMPLEX_NEGONE (gsl_complex_rect(-1.0,0.0)) /* Properties of complex numbers */ double gsl_complex_arg (gsl_complex z); /* return arg(z), -pi< arg(z) <=+pi */ double gsl_complex_abs (gsl_complex z); /* return |z| */ double gsl_complex_abs2 (gsl_complex z); /* return |z|^2 */ double gsl_complex_logabs (gsl_complex z); /* return log|z| */ /* Complex arithmetic operators */ gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b); /* r=a+b */ gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b); /* r=a-b */ gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b); /* r=a*b */ gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b); /* r=a/b */ gsl_complex gsl_complex_add_real (gsl_complex a, double x); /* r=a+x */ gsl_complex gsl_complex_sub_real (gsl_complex a, double x); /* r=a-x */ gsl_complex gsl_complex_mul_real (gsl_complex a, double x); /* r=a*x */ gsl_complex gsl_complex_div_real (gsl_complex a, double x); /* r=a/x */ gsl_complex gsl_complex_add_imag (gsl_complex a, double y); /* r=a+iy */ gsl_complex gsl_complex_sub_imag (gsl_complex a, double y); /* r=a-iy */ gsl_complex gsl_complex_mul_imag (gsl_complex a, double y); /* r=a*iy */ gsl_complex gsl_complex_div_imag (gsl_complex a, double y); /* r=a/iy */ gsl_complex gsl_complex_conjugate (gsl_complex z); /* r=conj(z) */ gsl_complex gsl_complex_inverse (gsl_complex a); /* r=1/a */ gsl_complex gsl_complex_negative (gsl_complex a); /* r=-a */ /* Elementary Complex Functions */ gsl_complex gsl_complex_sqrt (gsl_complex z); /* r=sqrt(z) */ gsl_complex gsl_complex_sqrt_real (double x); /* r=sqrt(x) (x<0 ok) */ gsl_complex gsl_complex_pow (gsl_complex a, gsl_complex b); /* r=a^b */ gsl_complex gsl_complex_pow_real (gsl_complex a, double b); /* r=a^b */ gsl_complex gsl_complex_exp (gsl_complex a); /* r=exp(a) */ gsl_complex gsl_complex_log (gsl_complex a); /* r=log(a) (base e) */ gsl_complex gsl_complex_log10 (gsl_complex a); /* r=log10(a) (base 10) */ gsl_complex gsl_complex_log_b (gsl_complex a, gsl_complex b); /* r=log_b(a) (base=b) */ /* Complex Trigonometric Functions */ gsl_complex gsl_complex_sin (gsl_complex a); /* r=sin(a) */ gsl_complex gsl_complex_cos (gsl_complex a); /* r=cos(a) */ gsl_complex gsl_complex_sec (gsl_complex a); /* r=sec(a) */ gsl_complex gsl_complex_csc (gsl_complex a); /* r=csc(a) */ gsl_complex gsl_complex_tan (gsl_complex a); /* r=tan(a) */ gsl_complex gsl_complex_cot (gsl_complex a); /* r=cot(a) */ /* Inverse Complex Trigonometric Functions */ gsl_complex gsl_complex_arcsin (gsl_complex a); /* r=arcsin(a) */ gsl_complex gsl_complex_arcsin_real (double a); /* r=arcsin(a) */ gsl_complex gsl_complex_arccos (gsl_complex a); /* r=arccos(a) */ gsl_complex gsl_complex_arccos_real (double a); /* r=arccos(a) */ gsl_complex gsl_complex_arcsec (gsl_complex a); /* r=arcsec(a) */ gsl_complex gsl_complex_arcsec_real (double a); /* r=arcsec(a) */ gsl_complex gsl_complex_arccsc (gsl_complex a); /* r=arccsc(a) */ gsl_complex gsl_complex_arccsc_real (double a); /* r=arccsc(a) */ gsl_complex gsl_complex_arctan (gsl_complex a); /* r=arctan(a) */ gsl_complex gsl_complex_arccot (gsl_complex a); /* r=arccot(a) */ /* Complex Hyperbolic Functions */ gsl_complex gsl_complex_sinh (gsl_complex a); /* r=sinh(a) */ gsl_complex gsl_complex_cosh (gsl_complex a); /* r=coshh(a) */ gsl_complex gsl_complex_sech (gsl_complex a); /* r=sech(a) */ gsl_complex gsl_complex_csch (gsl_complex a); /* r=csch(a) */ gsl_complex gsl_complex_tanh (gsl_complex a); /* r=tanh(a) */ gsl_complex gsl_complex_coth (gsl_complex a); /* r=coth(a) */ /* Inverse Complex Hyperbolic Functions */ gsl_complex gsl_complex_arcsinh (gsl_complex a); /* r=arcsinh(a) */ gsl_complex gsl_complex_arccosh (gsl_complex a); /* r=arccosh(a) */ gsl_complex gsl_complex_arccosh_real (double a); /* r=arccosh(a) */ gsl_complex gsl_complex_arcsech (gsl_complex a); /* r=arcsech(a) */ gsl_complex gsl_complex_arccsch (gsl_complex a); /* r=arccsch(a) */ gsl_complex gsl_complex_arctanh (gsl_complex a); /* r=arctanh(a) */ gsl_complex gsl_complex_arctanh_real (double a); /* r=arctanh(a) */ gsl_complex gsl_complex_arccoth (gsl_complex a); /* r=arccoth(a) */ __END_DECLS #endif /* __GSL_COMPLEX_MATH_H__ */