SUBROUTINE ZUNMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, $ WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, K, L, LDA, LDC, LWORK, M, N * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * ZUNMRZ overwrites the general complex M-by-N matrix C with * * SIDE = 'L' SIDE = 'R' * TRANS = 'N': Q * C C * Q * TRANS = 'C': Q**H * C C * Q**H * * where Q is a complex unitary matrix defined as the product of k * elementary reflectors * * Q = H(1) H(2) . . . H(k) * * as returned by ZTZRZF. Q is of order M if SIDE = 'L' and of order N * if SIDE = 'R'. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': apply Q or Q**H from the Left; * = 'R': apply Q or Q**H from the Right. * * TRANS (input) CHARACTER*1 * = 'N': No transpose, apply Q; * = 'C': Conjugate transpose, apply Q**H. * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines * the matrix Q. * If SIDE = 'L', M >= K >= 0; * if SIDE = 'R', N >= K >= 0. * * L (input) INTEGER * The number of columns of the matrix A containing * the meaningful part of the Householder reflectors. * If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. * * A (input) COMPLEX*16 array, dimension * (LDA,M) if SIDE = 'L', * (LDA,N) if SIDE = 'R' * The i-th row must contain the vector which defines the * elementary reflector H(i), for i = 1,2,...,k, as returned by * ZTZRZF in the last k rows of its array argument A. * A is modified by the routine but restored on exit. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,K). * * TAU (input) COMPLEX*16 array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by ZTZRZF. * * C (input/output) COMPLEX*16 array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * If SIDE = 'L', LWORK >= max(1,N); * if SIDE = 'R', LWORK >= max(1,M). * For optimum performance LWORK >= N*NB if SIDE = 'L', and * LWORK >= M*NB if SIDE = 'R', where NB is the optimal * blocksize. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * Based on contributions by * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA * * ===================================================================== * * .. Parameters .. INTEGER NBMAX, LDT PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) * .. * .. Local Scalars .. LOGICAL LEFT, LQUERY, NOTRAN CHARACTER TRANST INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JA, JC, $ LDWORK, LWKOPT, MI, NB, NBMIN, NI, NQ, NW * .. * .. Local Arrays .. COMPLEX*16 T( LDT, NBMAX ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL XERBLA, ZLARZB, ZLARZT, ZUNMR3 * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) LQUERY = ( LWORK.EQ.-1 ) * * NQ is the order of Q and NW is the minimum dimension of WORK * IF( LEFT ) THEN NQ = M NW = MAX( 1, N ) ELSE NQ = N NW = MAX( 1, M ) END IF IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN INFO = -5 ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR. $ ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 END IF * IF( INFO.EQ.0 ) THEN IF( M.EQ.0 .OR. N.EQ.0 ) THEN LWKOPT = 1 * * Determine the block size. NB may be at most NBMAX, where * NBMAX is used to define the local array T. * NB = MIN( NBMAX, ILAENV( 1, 'ZUNMRQ', SIDE // TRANS, M, N, $ K, -1 ) ) LWKOPT = NW*NB END IF WORK( 1 ) = LWKOPT * IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN INFO = -13 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZUNMRZ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) THEN RETURN END IF * * Determine the block size. NB may be at most NBMAX, where NBMAX * is used to define the local array T. * NB = MIN( NBMAX, ILAENV( 1, 'ZUNMRQ', SIDE // TRANS, M, N, K, $ -1 ) ) NBMIN = 2 LDWORK = NW IF( NB.GT.1 .AND. NB.LT.K ) THEN IWS = NW*NB IF( LWORK.LT.IWS ) THEN NB = LWORK / LDWORK NBMIN = MAX( 2, ILAENV( 2, 'ZUNMRQ', SIDE // TRANS, M, N, K, $ -1 ) ) END IF ELSE IWS = NW END IF * IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN * * Use unblocked code * CALL ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, $ WORK, IINFO ) ELSE * * Use blocked code * IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. $ ( .NOT.LEFT .AND. NOTRAN ) ) THEN I1 = 1 I2 = K I3 = NB ELSE I1 = ( ( K-1 ) / NB )*NB + 1 I2 = 1 I3 = -NB END IF * IF( LEFT ) THEN NI = N JC = 1 JA = M - L + 1 ELSE MI = M IC = 1 JA = N - L + 1 END IF * IF( NOTRAN ) THEN TRANST = 'C' ELSE TRANST = 'N' END IF * DO 10 I = I1, I2, I3 IB = MIN( NB, K-I+1 ) * * Form the triangular factor of the block reflector * H = H(i+ib-1) . . . H(i+1) H(i) * CALL ZLARZT( 'Backward', 'Rowwise', L, IB, A( I, JA ), LDA, $ TAU( I ), T, LDT ) * IF( LEFT ) THEN * * H or H' is applied to C(i:m,1:n) * MI = M - I + 1 IC = I ELSE * * H or H' is applied to C(1:m,i:n) * NI = N - I + 1 JC = I END IF * * Apply H or H' * CALL ZLARZB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI, $ IB, L, A( I, JA ), LDA, T, LDT, C( IC, JC ), $ LDC, WORK, LDWORK ) 10 CONTINUE * END IF * WORK( 1 ) = LWKOPT * RETURN * * End of ZUNMRZ * END