/* * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab * Copyright (C) 2008-2008 - INRIA - Allan SIMON * * This file must be used under the terms of the CeCILL. * This source file is licensed as described in the file COPYING, which * you should have received as part of this distribution. The terms * are also available at * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt * */ #include <stdlib.h> #include <stdio.h> #include "max.h" #include "fft_internal.h" /* c arrays a and b originally hold the real and imaginary c components of the data, and return the real and c imaginary components of the resulting fourier coefficients. c multivariate data is indexed according to the fortran c array element successor function, without limit c on the number of implied multiple subscripts. c the subroutine is called once for each variate. c the calls for a multivariate transform may be in any order. c c n is the dimension of the current variable. c nspn is the spacing of consecutive data values c while indexing the current variable. c nseg*n*nspn is the total number of complex data values. c the sign of isn determines the sign of the complex c exponential, and the magnitude of isn is normally one. c the magnitude of isn determines the indexing increment for a&b. c c if fft is called twice, with opposite signs on isn, an c identity transformation is done...calls can be in either order. c the results are scaled by 1/n when the sign of isn is positive. c c a tri-variate transform with a(n1,n2,n3), b(n1,n2,n3) c is computed by c call fft(a,b,n2*n3,n1,1,-1) c call fft(a,b,n3,n2,n1,-1) c call fft(a,b,1,n3,n1*n2,-1) c c a single-variate transform of n complex data values is computed by c call fft(a,b,1,n,1,-1) c c the data may alternatively be stored in a single complex c array a, then the magnitude of isn changed to two to c give the correct indexing increment and a(2) used to c pass the initial address for the sequence of imaginary c values, e.g. c c c array nfac is working storage for factoring n. the smallest c number exceeding the 15 locations provided is 12,754,584. c! */ void dfftbi ( double* a , double* b , int nseg , int n , int nspn , int isn , int ierr) { double* rstak ; int* istak ; int lout = 0 ; int lnow = 10; int lused= 10; int lbook = 10 ; int nfac[15] ; int i ; int in ; int j = 3 ; int j2 = 3 ; int j3 = 3 ; int jj = 9; int m = 0 ; int k ; int kt ; int kkk ; int nspan ; int nitems ; int ntot ; int maxp = 0; int maxf ; int itype; int istkgt ; int nf = abs ( n ) ; ierr = 0 ; /*determine the factors of n */ if ( nf == 1) return ; k = nf ; nspan = abs ( nf*nspn ) ; ntot = abs ( nspan*nseg) ; if ( isn*ntot == 0 ) { ierr = 1 ; return ; } /* we search as much 4 in the factor of vector's length as we can */ while ( (k- (int)(k/16)*16 ) == 0 ) { m++; nfac[m-1] = 4 ; k = k >> 4 ; } /* we search all square factor */ do { while ( k%jj == 0 ) { m++; nfac[m-1] = j ; k /= jj ; } j+=2; jj= j*j ; }while ( jj <= k); /* if the remaining size after all the previous division is less than 4 then it's the last factor */ if ( k <= 4) { kt = m; nfac[m] = k; if ( k != 1 ) m++; } else { if ( (k & 3) == 0 ) { m++; nfac[m-1] = 2 ; k = k >> 2 ; } /*all square factor out now but k >= 5 still */ kt = m ; maxp = max ( (kt+1)*2 , k-1); j=2; do { if ( k%j == 0 ) { m++; nfac[m-1] = j ; k /= j ; } j = (j+1) | 1 ; }while ( j <= k ); } if ( m <= ( kt+1) ) maxp = m + kt + 1 ; if ( m + kt > 15) { ierr = 2 ; return ; } if ( kt != 0 ) { j = kt ; do{ m++; nfac[m-1] = nfac[j-1]; j--; }while ( j != 0) ; } maxf = nfac[m-kt-1] ; if ( kt > 0 ) maxf = max ( nfac[kt-1] , maxf ); for ( kkk = 1 ; kkk <= m ; kkk++ ) { maxf = max ( maxf , nfac[kkk-1]); } nitems = maxf * 4 ; itype = 4 ; istkgt = 2 + ((lnow-1)/2) ;/*lnow = 10*/ istkgt = 6; /*i = ( (istkgt - 1 + nitems) * isize[3] -1) + 3 ;*/ i = 12 + nitems*2; /* this part is mainly to allocate size for workspace */ istak = (int*) malloc ( sizeof (int) * (unsigned int) i); istak[i-2] = itype ; istak[i-1] = lnow ; lout ++ ; lnow = i ; lused = max ( lused , lnow ); j = istkgt ; jj = j + maxf ; j2 = jj+ maxf ; j3 = j2+ maxf ; nitems = maxp ; itype = 2 ; /*istkgt = ( lnow*isize[1] -1)/isize[1] + 2;*/ istkgt = lnow + 1 ; /*i = ( (istkgt - 1 + nitems) * isize[1] -1) / isize[1] + 3 ;*/ i = lnow + nitems + 2 ; istak = (int*) realloc ( istak ,sizeof (int) * (unsigned int) i); rstak = (double*) malloc ( sizeof (double) * (unsigned int) i); istak[i-2] = itype ; istak[i-1] = lnow ; lout ++ ; lnow = i ; lused = max ( lused , lnow ); k = istkgt ; /* c la carte suivante est a supprimer si simple precision c next instruction commented by FD&MG (simulog residue?) c ******************************************** c k=2*k-1 c ********************************************* */ dfftmx( a , b , ntot , nf , nspan , isn , m , kt , &rstak[j-1] , &rstak[jj-1] , &rstak[j2-1] , &rstak[j3-1] , &istak[k-1] , nfac); k =2 ; in = 2 ; /* if (!( lbook <= lnow && lnow <= lused )) { ierr = 3 ; return ; } */ while ( in > 0) { if ( lbook > istak[lnow-1] || istak[lnow-1] >= lnow-1) { ierr = 4 ; } lout-- ; lnow = istak[lnow-1] ; in-- ; } free(istak); free(rstak); return ; }